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GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES
OF ADDITIVE FUNCTIONALS OF SYMMETRIC

MARKOV PROCESSES

BY MICHAEL B. MARCUS1 AND JAY ROSEN 2

City College of CUNY and College of Staten Island, CUNY

Let X be a strongly symmetric Hunt process with a-potential density
aŽ .u x, y . Let

22 a<GG s m u x , y dm x dm y - `Ž . Ž . Ž .Ž .HHa ½ 5
and let L m denote the continuous additive functional with Revuz measuret
m. For a set of positive measures MM ; GG 2, subject to some additionala

Ž .regularity conditions, we consider families of continuous in time additive
� m Ž . q 4functionals L s L , t, m g R = MM of X and a second-order Gaussiant

� Ž . 4chaos H s H m , m g MM which is associated with L by an isomor-a a

phism theorem of Dynkin.
A general theorem is obtained which shows that, with some additional

regularity conditions depending on X and MM, if H has a continuousa

version on MM almost surely, then so does L and, furthermore, that moduli
of continuity for H are also moduli of continuity for L.a

Special attention is given to Levy processes in Rn and T n, the n-´
dimensional torus, with MM taken to be the set of translates of a fixed
measure. Many concrete examples are given, especially when X is Brown-
ian motion in Rn and T n for n s 2 and 3. For certain measures m on T n

and processes, including Brownian motion in T 3, necessary and sufficient
� m Ž . q 4conditions are given for the continuity of L , t, m g R = MM , where MMt

is the set of all translates of m.

1. Introduction. In this paper we study the continuity of families of
additive functionals of symmetric Markov processes. Let us briefly consider

� q4this question heuristically. Let X , t g R be a symmetric Markov processt
with locally compact state space S. One may think of the local time of X , ups
to time t, at a point x g S, as

tx1.1 L s lim d X ds,Ž . Ž .Ht x , « s
«ª0 0
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� 4whenever the limit exists in some sense, where d is a family of approxi-x, «

mate delta functions at x. Considerable effort has been spent over the last 30
years to find reasonable conditions for the continuity of the stochastic process

� x Ž . q 4 w xTT s L , t, x g R = S . Some historical background is given in 14 , int
which we obtain necessary and sufficient conditions for the continuity of TT for
Markov processes with symmetric transition probability density functions.

Local times exist only for a relatively narrow class of Markov processes. A
Levy process in Rn has a local time only when n s 1. When local times do´
not exist, and even when they do, one can consider continuous additive
functionals of a Markov process determined by measures on the state space of
the process. We may think of these as

t
m1.2 L s lim d X ds dm x ,Ž . Ž . Ž .H Ht x , « s

«ª0 S 0

where m is a positive measure on S. In this case, depending on the measure,
such limits exist for all Levy processes in Rn, for all n G 1. For some family´

Ž .of measures MM for which 1.2 exists, endowed with some topology, we
� m Ž . q 4consider the question of the continuity of L s L , t, m g R = MM . Thet

w x w xpapers of Bass 2 and Bass and Khoshnevisan 3 are the only prior works
we know that pursue this question.

w xIn 14 , in studying the continuity of the local time process TT, we used an
isomorphism theorem of Dynkin, which enabled us to show that the continu-
ity of TT was equivalent to the continuity of an associated Gaussian process on
S. Since the sample path properties of Gaussian processes are very well
understood, we were able to use them to obtain many new results about local
times of Markov processes. A different version of Dynkin’s isomorphism
theorem associates a second-order Gaussian chaos on MM with L. In this
paper we first prove a general theorem which shows that the continuity of
this Gaussian chaos implies the continuity of L, subject to various additional
conditions. These conditions are removed when we specialize to the case of
Levy processes in Rn and T n, the n-dimensional torus, with MM taken to be´
the set of translates of a fixed measure. Furthermore, using known results
about sample path properties of Gaussian chaoses, concrete sufficient condi-
tions for the continuity and modulus of continuity of L are obtained.

Even when MM is restricted to the set of translates of a fixed finite measure,
the diversity of the processes L is vastly greater than its subset TT. In some
cases descriptions of L in terms of the associated Gaussian chaoses lead to
weak results. In other cases the estimates obtained are quite sharp and for
certain important Levy processes, including Brownian motion and other´
stable processes in T 3, taken together with certain finite measures, we show
that L is continuous if and only if the associated Gaussian chaos is continu-
ous.

Ž x . qLet X s V, FF , X , P , t g R , denote a strongly symmetric Hunt processt t
with lifetime z and locally compact separable state space S with reference

w xmeasure m. The full definition of these terms is given in 14 . For the
purposes of this paper, it is enough to just say that X has a symmetric
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Ž .transition probability density p x, y . Let a ) 0. As usual, we define thet
a-potential density

`
a ya t1.3 u x , y s e p x , y dtŽ . Ž . Ž .H t

0

and, setting
`

a ya t1.4 u x , y s e p x , y dt ,Ž . Ž . Ž .Hd t
d

assume that, for all d ) 0,

1.5 ua x , y - ` ; x , y g S.Ž . Ž .d

0Ž . 0Ž . Ž .We also consider u x, y for a s 0 and define u x, y as in 1.4 . Whend
0Ž . Ž .dealing with u x, y we assume that 1.5 holds. As usual, we sometimes

drop the superscript 0 when dealing with u0 or u0. We are primarilyd
a Ž .concerned with Markov processes for which u x, x s ` for some, or all,

x g S. This is the fundamental difference between the processes considered in
w xthis paper and those considered in 14 .

a Ž . Ž . Ž .We assume that Hu x, y f y dm y is a bounded continuous function on
S for some, equivalently all, a ) 0, for all bounded measurable functions f on

Ž .S which vanish outside of a compact subset of S. When we consider u x, y
Ž . Ž . Ž .we assume that this is also the case for Hu x, y f y dm y . These are the

w xsmoothness hypotheses on the potential given in Chapter 6, 4.1 and 4.2, of 4 .
Theorem 1.1 is expressed in terms of an auxiliary function h . By theŽa .
smoothness hypotheses on the potential, we can always find strictly positive

1Ž .bounded functions f in L dm such that

1.6 h x s ua x , y f y dm yŽ . Ž . Ž . Ž . Ž .HŽa .

a Ž . a Ž . Ž . Ž .is continuous and bounded. We define U h m ? s Hu ?, y h y dm y .Ža . Ža .
To any continuous additive functional A of X we can associate a positivet

s-finite measure n called the Revuz measure of A . The measure n isA t A
defined by the formula

1 tm1.7 n g s lim E g X dAŽ . Ž . Ž .HA s sž /ttª0 0

for all bounded continuous functions g on S, and A is uniquely determinedt
by n . We will use the notation L m for the continuous additive functional withA t
Revuz measure m, and often refer to L m as the continuous additive functionalt
determined by m. Not every s-finite measure is the Revuz measure of a
continuous additive functional. The set of all Revuz measures of continuous

Ž .additive functionals of X will be denoted by Rev X . A complete characteri-
Ž . w x w xzation of Rev X is known; see, for example, 6 and 16 . For our purposes it

Ž .will be enough to note that a sufficient condition for m g Rev X is that
a Ž . a Ž .U m x is bounded, or, more generally, that U h m x is bounded for someŽa .

a G 0.
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For positive measures m on S, define

1 < a1.8 GG s m u x , y dm x dm y - `Ž . Ž . Ž . Ž .HHa ½ 5
and

22 a<1.9 GG s m u x , y dm x dm y - ` .Ž . Ž . Ž . Ž .Ž .HHa ½ 5
Let GG1 , GG 2 denote the set of finite measures in GG1, GG 2, respectively. Thea , F a , F a a

Cauchy]Schwarz inequality shows that

1.10 GG 2 : GG1 .Ž . a , F a , F

Throughout this paper a is a fixed number greater than or equal to 0. As
usual, we denote GG1 and GG 2 by GG1 and GG 2.0 0

We are concerned with the sample path properties of the stochastic process

1.11 L s L m , t , m g Rq= GG 2 ,Ž . Ž .� 4t a , RR

2 2 Ž . w xwhere GG s GG l Rev X . An isomorphism theorem of Dynkin given in 5a , RR a

� Ž . 24associates L with a second-order Gaussian chaos H s H m , m g GG . Aa a a

Gaussian chaos is a family of second-order terms in the Hermite polynomial
2Ž .expansion of random variables in L g , where g is the canonical Gaussian

product measure on R N. We describe H in Section 2 in which we also give,a

in Theorems 2.1 and 2.2, proofs of versions of Dynkin’s theorem which we use.
We begin with a general theorem which states that a family of continuous

additive functionals of a Markov process is jointly continuous if the associ-
ated Gaussian chaos is continuous, subject to various additional conditions.
In several subsequent theorems we impose regularity conditions which en-
able us to eliminate or simplify these additional conditions.

Ž .For any set CC we denote by BB CC the set of bounded functions on CC with
the topology induced by the sup-norm. Occasionally, we will simply say that a
stochastic process is continuous to mean that the process has a version which
is continuous almost surely.

THEOREM 1.1. Let X be a Markov process satisfying all the conditions
given above and let MM : GG 2. Assume that we are given a topology OO for MMa

under which MM is locally compact and has a countable base. Assume also
that:

Ž . a a Ž .i m ¬ U m and m ¬ U h m are continuous maps from MM to BB S ;Ža .
Ž . Ž .ii the associated second-order Gaussian chaos H m is continuous al-a

most surely on MM.

Then there exists a polar set Q : S, such that, if we restrict X and MM to
� m Ž . w . 4S y Q, we can find a continuous version of L , t, m g 0, z = MM .t

REMARK 1.1. When X is a Levy process on Rn or T n, the n-dimensional´
torus, and the set of measures MM is the set of translates of a fixed finite

Ž .measure m, the exclusion of a polar set is unnecessary and i can be
eliminated. These results are given in Theorems 1.3 and 3.2.
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REMARK 1.2. For many Markov processes, such as Levy processes, the´
killing of time z is identically infinite. In this case the last term in Theorem

� m Ž . q 41.1 can be replaced by L , t, m g R = MM . In general, when z is nott
infinite, in order to find a version of L m that is also continuous at z , we mustt
restrict MM to be a set of measures with common compact support. This is the
content of Theorem 3.1.

REMARK 1.3. Since measures with bounded potentials do not charge polar
sets, restricting MM to S y Q does not require us to alter the measures in MM.

Theorem 1.1 requires the continuity of an associated Gaussian chaos
Ž .H m . We now describe a well-known sufficient condition for the continuitya

of a Gaussian chaos. Define a metric on GG 2 :a

d m , n s d m , nŽ . Ž .a

1r2
2as u x , y d m x y n x d m y y n yŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .HHž /1.12Ž .

1r22s E H m y H n ,Ž . Ž .Ž .ž /a a

Ž .where H m is the Gaussian chaos associated with the continuous additivea
a w Ž .functional with potential U m. The last equality is explained in 2.10 for

xa s 0.

� Ž . 4THEOREM 1.2. Let H s H m , m g MM be a second-order Gaussian chaosa a
2 Ž 2 .and let MM : GG be a set of measures that is compact with respect to GG , d ,a a

Ž .where d is given in 1.12 . Assume that there exists a probability measure s
on MM such that

h 1
1.13 lim sup log d« s 0,Ž . H

s B t , «hª0 Ž .Ž .0 dtgMM

Ž .where B t, « denotes the ball in the metric d, with center at t and radiusd
« ) 0. Then H has a version which is continuous almost surely.a

w xThis is Theorem 11.22 of 9 . See Remark 2.2 for further explanation.

Ž .REMARK 1.4. Note that a sufficient condition for 1.13 is that

`

1.14 I d , MM s log N MM , « d« - `,Ž . Ž . Ž .Hdef d
0

Ž .where N MM, « is the minimum number of balls of radius « that coversd
w Ž . xMM log N MM, ? is called the metric entropy of MM with respect to d . How-d

Ž . Ž .ever, neither 1.13 nor 1.14 is a general necessary condition for the continu-
ity of the type of second-order Gaussian chaoses considered in Theorems 2.1
and 2.2. In fact, we do not know necessary and sufficient conditions for the
continuity of these chaoses. However, of particular importance in this paper,
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w xis that by recent results 15 there are many examples of classes of these
chaoses for which a necessary and sufficient condition for continuity is

` 1r2
1.15 J d , MM s log N MM , « d« - `.Ž . Ž . Ž .Ž .Hdef d

0

Ž .REMARK 1.5. The statement in 1.13 , but with the log term replaced by
its square root, is necessary and sufficient for the continuity of Gaussian
chaoses associated with ordinary local times. In this case the set of measures

Ž .are the unit point masses. This implies that 1.15 is necessary and sufficient
for the continuity of Gaussian chaoses associated with local times of Levy´
processes. This is discussed in Section 4.

We now specialize to the case of Levy processes in Rn, or T n, and for the´
class of measures we consider the set of translates

1.16 m , x g Rn or T n� 4Ž . Ž .x

Ž . Ž .of a single finite measure m; that is, m A s m x q A for all measurablex
sets A ; Rn, or T n. This class of measures includes the point masses which,
obviously, are the translations of the point mass at the origin. Thus the
family of continuous additive functionals that are determined by the trans-
lates of a single finite measure include the local times. It is easy to check that

Ž . Ž .m g Rev X implies that m g Rev X for each translate of m. For a set ofx
Ž . Ž . Ž .measures such as 1.16 , we also think of d x, y s d m , m as a metrica def a x y

on Rn, or T n.
Using the added structure provided by Levy processes in Rn, or T n, the´

basic continuity result, Theorem 1.1, can be simplified as follows.

� q4 nTHEOREM 1.3. Let X s X , t g R be a symmetric Levy process in R .´t
Let m g GG 2 be a finite measure. If the associated second-order chaos H s1 1
� Ž . n4 Ž . � mxH m , x g R is continuous almost surely, then m g Rev X and L ,1 x t
Ž . n q4 nx, t g R = R is continuous almost surely. This also holds with R re-
placed by T n.

We can do more with continuous additive functionals of Levy processes in´
T n. For a certain class of these processes and for certain smooth measures

2 � mx n4m g GG , we can show that L , x g T is continuous almost surely if and1 t
� Ž . n4only if the associated second-order chaos H s H m , x g T is continu-1 1 x

ous almost surely. Before presenting this we need to develop some notation
and to mention some results about continuity of Gaussian chaoses.

� q4 nLet X s X , t g R be a symmetric Levy process in R with´t

1.17 Ee il X t s eytc Žl. , l g Rn .Ž .
� Ž . q4 nSimilarly, let Y s Y t , t g R be a symmetric Levy process in T with´

1.18 Ee ikY t s eytc Žk . , k g Zn .Ž .
In each case we refer to c as the characteristic exponent of the process. One
reason for denoting each characteristic exponent by c is that for each Levy´
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n Ž . nprocess X in R as defined in 1.17 we can define a Levy process Y in T´
w x nwith the same function c by projecting X onto 0, 2p . This is explained in

Section 6.
The isomorphism theorem can also be used to obtain interesting results

about Gaussian chaoses. The next theorem, a consequence of the isomor-
phism theorem, gives necessary conditions for the continuity and bounded-
ness of a class of second-order Gaussian chaoses closely related to the
associated chaoses of certain families of continuous additive functionals. It is

� 4 nproved in Section 6. In what follows let g be independent identicallyk k g Z
distributed normal random variables with mean 0 and variance 1.

THEOREM 1.4. Let c be the characteristic exponent of a Levy process in T n´
� Ž .4 n

nand b k the Fourier coefficients of a finite measure on T . Thenk g Z

b kŽ . yi k xsup eÝ
n 1 q c kŽ .nxgT kgZ

g g y d b k y jŽ .Ž .j k j , k iŽkyj. xF CE sup e ,Ý
nž /n ' '1 q c j 1 q c kŽ . Ž .xgT j , kgZ

1.19Ž .

� Ž .4where C is a constant independent of c and b k . Furthermore, a similar
result is obtained when the uniform norm is replaced by the Lipshitz norm,

< < yi k x Ž yi k x yik y.nthat is, sup ? , with e replaced by e y e for all< xyy < F d , x, y g T
k g Zn.

Ž .In preparation for the next theorem, we say that a positive function h k ,
k g Zn, is almost regularly varying with index p if there is a regularly

qŽ .varying function h x , x g R , of index p, such that
y1 < < < <1.20 C h k F h k F Ch kŽ . Ž . Ž . Ž .

for some constant 0 - C - `.
� Ž .4 nIn the next theorem we will assume that the sequences c k andk g Z

� Ž .4 nb k in Theorem 1.4 are symmetric and almost regularly varying withk g Z
index nr2 - p - n and q - 0, respectively. In this case it follows from

w x Ž .Theorem 1.3 of 15 that the two sides of 1.19 are either both finite or both
� Ž .4 ninfinite. Note that by the positivity of the Fourier coefficients b k wek g Z

1 Ž . 1 Ž .have that U m x is bounded if U m 0 - `. This allows us to obtain the
following equivalence relationships.

� Ž . q4 nTHEOREM 1.5. Let X t , t g R be a Levy process in T with character-´
� Ž .4 � Ž .4n nistic sequence c k and let m k be the Fourier coefficients of aˆk g Z k g Z

n � Ž .4 � Ž .4n nfinite measure m on T . Assume that c k and m k are symmet-ˆk g Z k g Z
ric and almost regularly varying with index nr2 - p - n and q - 0, respec-

< <tively, and that there exists a constant C such that, for all j G 1,

< <n < <nk m k j m jŽ . Ž .ˆ ˆ
1.21 sup F C .Ž .

1 q c k 1 q c jŽ . Ž .< < < <k G j
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Then the following are equivalent:

Ž . 1 Ž .i U m 0 - `;
Ž X. Ž . Ž Ž ..ni Ý m k r 1 q c k - `;ˆk g Z
Ž . 2 Ž . � n4ii m g GG and J d, MM - `, where MM s m , x g T ;1 x
Ž . � Ž . n4iii the Gaussian chaos H m , x g T is continuous almost surely;1 x
Ž . Ž . � mx Ž . n q4iv m g Rev X and L , x, t g T = R is continuous almost surely.t

< <The interesting cases of this theorem are when p q q s n. The next
result is a corollary of this theorem and its proof for Brownian motion in T 3.

� Ž . q4 3COROLLARY 1.1. Let X t , t g R be Brownian motion in T and let
Ž . w . Ž .f u , u g 0, ` , be regularly varying at 0 such that uf u is decreasing on
Ž x Ž . Ž .0, 1 and f u ' 0 for u g 1, ` . Define

t 3 q1.22 LL x , t s f X s y x ds, x , t g T = R .Ž . Ž . Ž . Ž .Ž .H
0

Then the following are equivalent:

Ž . Ž .i LL 0, t is finite almost surely;
Ž . � Ž . Ž . 3 q4ii LL x, t , x, t g T = R is continuous almost surely;
Ž . Ž . 1w xiii uf u g L 0, 1 .

We should mention that m g GG 2 implies that n F 3. Also Theorem 1.5 does1
not apply to Brownian motion on T 2. Note that for local times the existence of

� d x n4the 1-potential does not imply the continuity of L , x g T but for Brown-t
ian motion in T 3 it does for the measures considered in Theorem 1.5. We do
not know whether or not this is true in T 2. The equivalence of the two

Ž . Ž .apparently simple statements i and iv in Theorem 1.5 suggests that
perhaps it can be obtained by a simple direct argument. Our proof is complex

Ž .and circuitous. Also Theorem 1.5 suggests that the metric d of 1.12 , which
we have not seen before in potential theory, has a significant role in describ-
ing continuity properties of additive functionals of Markov processes.

An analog of Theorem 1.5 and Corollary 1.1 also holds for Levy processes´
n w xin R . This is given in 11 .

Theorem 1.5 depends very strongly on the Fourier coefficients of the
measures and on the characteristic sequences of the Levy processes being´

w xsmooth. In 13 , employing different methods from those used in this paper,
we show that there exists a large class of measures and signed measures m,

n � ma Ž . n q4such that, for arbitrary Levy processes on T , L , a, t g T = R is´ t
Ž .continuous if and only if J t , MM - `, wherea

t m , mŽ .a a b

1r2
as u x , y d m x y m x d m y y m yŽ . Ž . Ž . Ž . Ž .Ž . Ž .HH a b a bž /1.23Ž .

Ž .for some a ) 0 and this is valid for any n G 1. The metric in 1.23 is
Ž w xassociated with the energy integral of X. In 13 we consider the more



M. B. MARCUS AND J. ROSEN1138

general class of continuous additive functionals determined by generalized
w x .functions, as defined in 6 .

When the conditions of Theorem 1.5 are not satisfied, we can use Theorem
� mx Ž . n q41.3 which generally allows us to infer continuity of L , x, t g R = Rt

w Ž . n qx Ž . Ž .or x, t g T = R when 1.14 holds and, in fact, 1.14 is not much
Ž .weaker than 1.15 . Here is a concrete application of Theorem 1.3. Let

� q4 nX s X , t g R be a symmetric Levy process in R with characteristic´t
exponent c and let m be a finite measure on Rn with characteristic function
m. Assume thatˆ

dh
1.24 g j s - `.Ž . Ž . H 1 q c j y h 1 q c hŽ . Ž .Ž . Ž .

Ž . Ž 1Ž ..2Note that g j is the Fourier transform of u x so that

22 11.25 g j m j dj s u x , y dm x dm y .Ž . Ž . Ž . Ž . Ž . Ž .ˆ Ž .H HH
� q4 nTHEOREM 1.6. Let X s X , t g R be a symmetric Levy process in R´t

with characteristic exponent c . If
1r22H g j m j djŽ . Ž .ˆ` ž /< j < G x

1.26 dx - `,Ž . H x1

Ž . � mx Ž . n q4then m g Rev X and L , x, t g R = R is continuous almost surely. Int
particular, for Brownian motion in R2, this is the case when

1
< <1.27 m j s O as j ª `.Ž . Ž .ˆ 2q«ž /< <log jŽ .

3 Ž .By Theorem 1.5 we have for Brownian motion in T that, if m g Rev X ,
� mx Ž . 3 q4L , x, t g R = R is continuous almost surely if and only ift

m kŽ .ˆ
1.28 - `Ž . Ý 2< <1 q k3 Ž .kgZ

� Ž .4 Ž .as long as m k is almost regularly varying in the sense of 1.20 andˆ
Ž .satisfies 1.21 .

The only other papers that we know of that deal with the joint continuity
of continuous additive functionals of Markov processes indexed by measures

w x w x nare 2 and 3 , which consider this question for Brownian motion in R . The
w x Ž .material in 3 shows that 1.14 , for all compact subsets of measures MM with

bounded potential, is sufficient for the continuity of the associated continuous
� m Ž . q 4additive functionals L , t, m g R = MM of Brownian motion but with thet

metric d replaced by
1r2

a1.29 k m , n s sup u x y y d m y y n y .Ž . Ž . Ž . Ž . Ž .Ž .H
nxgR
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Furthermore, this result is valid in Rn for all n G 1. However, the metric k
Ž .is difficult to estimate. It is not comparable to the metric d given in 1.12 .a

n w xRestricted to R for n s 2 or 3, the methods of 3 seem to give somewhat
weaker results about the continuity of continuous additive functionals of
Brownian motion than the ones obtained in this paper. For example, the

Ž .result in 1.22 is implied by the existence of the 1-potential, whereas the
Ž .metric k in 1.29 is a function of the 1-potential, and for the continuity of

mx Ž . ŽL one must also have I k , MM - `. Pursuing this line, one is off by a factort
.of the square of a logarithm. Also in some cases, such as those that occur in

Section 7, in the study of moduli of continuity of measure-indexed continuous
additive functionals, the metric k is comparable only to d1r2.

A slightly different version of the isomorphism theorem, Theorem 2.2, can
be used to obtain the modulus of continuity of measure-indexed continuous
additive functionals. Here are two examples of such results for Brownian

2 � 24motion in R where, as above, m , a g R denotes the set of translates of aa
fixed finite measure m on R2.

Given a set A ; Rn, let meas A denote the Hausdorff measure of A ina

dimension a . Let dim A denote the Hausdorff dimension of A. That is,
� < 4dim A ' sup a meas A s ` . We define the index of a measure m to be thea

supremum of the numbers u such that

1.30 sup m B x , r F Cr u ; r F 1,Ž . Ž .Ž .
nxgR

Ž .where B x, r is a Euclidean ball at x of radius r. We note that by Frostman’s
lemma dim A s b if and only if A carries a finite measure with index b.
Ž w x .See, e.g., Chapter 10 of 8 .

� q4 2THEOREM 1.7. Let B s B , t g R be Brownian motion in R . Lett
A ; R2 have Hausdorff dimension b, 0 - b F 2. Then there exists a finite

Ž .measure m g Rev X , supported on A, for which
L ma y L mb

t t
1.31 lim sup s 0Ž . Ž b r2.y«< <a y b< <ayb ª0

2w xa , bg 0, 1

for almost all t g Rq almost surely for all « ) 0.
Equivalently, let m be a measure with index b. Then m is supported on a

Ž .set A with dim A G b and 1.31 holds.

For the next theorem let us note that it follows from Holder’s inequality¨
2 1 Ž . pthat, for Brownian motion in R , U f x is bounded if f g L for some 1 - p.

� q4 2THEOREM 1.8. Let B s B , t g R be Brownian motion in R . Let m be at
2 Ž . pfinite measure on R such that m s f x dx, where f g L for some 1 - p F 2.

Then
L ma y L mb

t t
5 51.32 lim sup F C fŽ . p2yŽ2r p. 3r2< < < < < <a y b log a y b< <ayb ª0

2w xa , bg 0, 1
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for almost all t g Rq almost surely, where C is a finite constant which may
depend on p.

Ž .The Gaussian chaos H m that we have been referring to is carefully
defined in Section 2, in which we also give, in Theorems 2.1 and 2.2, two
versions of the isomorphism theorem. These are more complicated than the

w xversions given in 14 , in which local times are associated with Gaussian
processes. Viewing that case in the light of this paper, we see that the
measures are point masses and, clearly, integration with respect to point
masses is trivial. Here we must carry out the relevant integrations. Thus
Section 2 in this paper does not follow easily from the material on the

w xisomorphism theorem in 14 .
Theorem 1.1 and the comments following it are proved in Section 3. In a

brief Section 4 we show that when a Markov process has a local time,
continuity of the local time and the associated Gaussian chaos are equivalent.
Theorem 1.3, for processes in Rn, and Theorem 1.6 are proved in Section 5. In
Section 6 we prove Theorem 1.3 for processes in T n. We also prove Theorems
1.4 and 1.5, Corollary 1.1 and obtain an analog of Theorem 1.6 for Levy´
processes in T n. A concrete description of the Gaussian chaoses associated
with continuous additive functionals of Levy processes on T n is also given. In´
Section 7 we briefly consider the moduli of continuity of continuous additive
functionals of Markov processes and give the proofs of Theorems 1.7 and 1.8.

Throughout this paper C will denote a constant greater than 0 which is
not necessarily the same at each occurrence. Also we use the notation
Ž . Ž .f x ; g x as x ª ` to mean that there exist constants 0 - C , C - ` such1 2

Ž . Ž . Ž .that C g x F f x F C g x for all x G x for some x sufficiently large,1 2 0 0
and similarly at 0.

w x2. The isomorphism theorem. In 14 we presented a proof of a version
of Dynkin’s isomorphism theorem that related the local time of a symmetric
Markov process to a mean-zero Gaussian process, which had as its covariance
the 1-potential density of the Markov process. In this paper we are interested
in Markov processes which may not have local times but for which we can
define continuous additive functionals determined by positive measures on
the state space. In this section we prove a version of Dynkin’s isomorphism
theorem which relates these functionals to a Gaussian chaos on the space of

2 2 Ž .measures GG s GG , defined in 1.9 . The argument that we give can be used0
for any a G 0. However, to keep the notation from becoming too cumbersome,
we carry out the argument in detail only in the case a s 0.

To define the second-order Gaussian chaos H referred to in Section 1, we
� 14first consider the Gaussian process G , r g GG , which has mean 0 andr

covariance

2.1 E G G s u x , y dr x df y .Ž . Ž . Ž . Ž .Ž . HHG r f
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Ž . Ž . Ž . Ž .Let r dy ' p x, y dm y . It is easy to see, by assumption 1.5 for a s 0,x, d d

Ž . 1that r dy g GG for all d ) 0 and x g S and thatx, d

2.2 E G G s u X x , y .Ž . Ž .Ž .Xr r dqdx , d y , d

Ž . w xLet G ' G . Then, by 2.2 and Lemma 4.5 of 14 , we have thatx, d r x , d

22 2
X X X2.3 E G G s 2 u x , y q u x , x u y , y .Ž . Ž . Ž . Ž .Ž .Ž .x , d y , d dqd 2 d 2 d

Therefore
22 2 2 2

X X X2.4 E G y E G G y E G s 2 u x , y .Ž . Ž .Ž .Ž .Ž . Ž .ž /ž /x , d x , d y , d y , d dqd

In order to define the Gaussian chaos which occurs in the isomorphism
theorem, we first consider a simpler class of Gaussian chaoses

2.5 H m , d s G2 y E G2 dm xŽ . Ž . Ž .Ž .Ž .H x , d x , d

2 Ž .for d ) 0 and m g GG . It follows from 2.4 that

2X
X2.6 E H m , d H n , d s 2 u x , y dm x dn y .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .HH dqd

Therefore, for m g GG 2, we have that

2.7 lim H m , d ' H mŽ . Ž . Ž .
dª0

exists as a limit in L2 and satisfies

2.8 E H m s 0Ž . Ž .Ž .
and

2 22.9 E H m H n s 2 u x , y dm x dn y ; m , n g GG .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .HH
Thus we see that

1r22E H m y H nŽ . Ž .Ž .Ž .
1r2

2s u x , y d m x y n x d m y y n yŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .HHž /2.10Ž .

; m , n g GG 2 .

Ž . Ž .We explain why we call H m, d and H m Gaussian chaoses in Remark 2.1.
We continue to define the terms which appear in the isomorphism theo-

Ž .rem. Let f and h be as given in 1.6 . Since u is an excessive function in each
variable, it follows that h is an excessive function and hence lower semicon-
tinuous. Moreover, h ) 0 and 1rh is locally bounded. For g g b SS we define

1
Žh.2.11 P g x s P gh x .Ž . Ž . Ž . Ž .t th xŽ .
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It is easy to see that P Žh. is a semigroup. It follows from Theorem 62.19 oft
w x Ž x r h.17 that there exists a unique Markov process V, FF , X , P , called thet t
h-transform of X, with transition operators P Žh., for whicht

1
x r h x2.12 P F v 1 s P F v h X vŽ . Ž . Ž . Ž .Ž .Ž .Ž .�t - z Žv .4 th xŽ .

for all F g bFF . Let r g GG1 be a compactly supported probability measure. Ast
usual, we set

2.13 E rr h ? s P x r h ? dr x .Ž . Ž . Ž . Ž .H
For n a measure and f a function on S, we denote by f ? n the measure on

Ž . Ž .S given by f x n dx , x g S. Also, if g is a kernel on S = S and n is a
Ž . Ž . Ž . Ž . Ž . Ž . Ž .measure on S, then gn ? ' Hg ?, y n dy and gfn ? ' Hg ?, y f y n dy . Let

x ' 1rh ? r and b ' f ? m. It is easy to verify that x , b g GG1.
w xThe next theorem is contained in Theorem 6.1 of 5 . We give a more

detailed proof for the convenience of the reader. In this theorem, for a given
Ž . 2Markov process with 0-potential density u x, y and measures m g GG with

bounded potential, we consider L m s lim L m and the associated Gaussian` t ª` t
Ž .chaos H m .

� 4̀ 2THEOREM 2.1. Let m be a sequence of measures in GG and assumei is1
m? Ž m1 m2 .that Um is a bounded on S for all 1 F i F `. Set L s L , L , . . . andi ` ` `

Ž . Ž Ž . Ž . . 1H m s H m , H m , . . . . Then, for any compactly supported r g GG and? 1 2
CC-measurable nonnegative function F on R`,

1 1rr h m?2.14 E E F L q H m s E F H m G G ,Ž . Ž . Ž .Ž . Ž .Ž . Ž .G ` ? G ? x b2 2

where CC denotes the s-algebra generated by the cylinder sets of R`.

PROOF. This theorem is a generalization of the isomorphism theorem for
w xExample 2 given in Section 4 of 14 . We explain how the proof of that

theorem can be modified to prove this one. Our argument is meant to be read
w x Ž . w xin conjunction with the material in 14 . According to 4.38 of 14 , we have

n G Gu , d v , di iE G GŁG x bž /ž /2is1

1
s cov B ??? cov BŽ . Ž .Ý Ý d 1 d < B <n ž /2 � 4 PPBjCs 1, 2, . . . , n

2.15Ž .

= u x y u z , y ??? u b z ,Ž . Ž . Ž .Ž .Ý d p Ž1. 2 d p Ž1. p Ž2. d p Ž <C <.

where the second sum is taken over the set of all possible pairings PP of
� 4 � 4u j v . The specific pairs in PP are denoted by B , . . . , B . If, fori ig B i ig B 1 < B <

Ž . Ž . Ž .example, B s u , v , then cov B ' E G G . The last sum is takeni j k d i u , d v , dj k
Ž Ž . Ž < < ..over all permutations p 1 , . . . , p C of C and over all ways of assigning

� 4 � 4 � 4u , v to y , z . The explanation of what y , z are and whatp Ž i. p Ž i. p Ž i. p Ž i. p Ž i. p Ž i.
Ž .we mean by ‘‘assigning’’ is given in the text immediately preceding 4.38 of

w x14 .
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� 4 � 4 � 4For any pairing PP of u j v and subset A : 1, 2, . . . , n , leti ig B i ig B
d s 1 or 0 depending on whether or not u is paired with v for all i g A.A, PP i i

Ž .Applying 2.15 to the simple identity
n G G y E G GŽ .u , d v , d u , d v , di i i iE G GŁG x bž /ž /2is1

G G G Gu , d v , d u , d v , d< <A i i i is y1 E E G G ,Ž .Ý Ł ŁG G x bž / ž /ž /ž /c2 2igA igA� 4A: 1, . . . , n

we see that
n G G y E G GŽ .u , d v , d u , d v , di i i iE G GŁG x bž /ž /2is1

1 < <As y1 d cov B ??? cov BŽ . Ž . Ž .Ý Ý Ý A , PP d 1 d < B <n ž /2 � 4 A:B PPBjCs 1, 2, . . . , n

= u x y u z , y ??? u b zŽ . Ž . Ž .Ž .Ý d p Ž1. 2 d p Ž1. p Ž2. d p Ž <C <.
2.16Ž .

1
Xs cov B ??? cov BŽ . Ž .Ý Ý d 1 d < B <n ž /

X2 � 4 PPBjCs 1, 2, . . . , n

= u x y u z , y ??? u b z ,Ž . Ž . Ž .Ž .Ý d p Ž1. 2 d p Ž1. p Ž2. d p Ž <C <.
X X � 4 � 4Xwhere Ý is taken over the set of all possible pairings PP of u j vPP i ig B i ig B

such that u is not paired with v for any i. In the last step we usedi i
< < < <A Ay1 d w PP s w PP y1 dŽ . Ž . Ž . Ž .Ý Ý Ý ÝA , PP A , PP

A:B A:BPP PP

s w PP 1 y d s X w PPX ,Ž . Ž .Ž .Ý Ł Ý�i4 , PP
XigBPP PP

Ž .where w PP denotes any function of PP.
A similar analysis shows that

E G G y E G GŽ .Ž .ŁG u , d v , d u , d v , dž /i i i i
igB

s X cov B ??? cov B .Ž . Ž .Ý d 1 d < B <ž /
XPP

2.17Ž .

Therefore if we set u s v s x we geti i i

n 2 2G y E GŽ .x , d x , di iE G GŁG x bž /ž /2is1

G2 y E G2Ž .x , d x , di is EÝ ŁG ž /ž /2igB� 4BjCs 1, 2, . . . , n

2.18Ž .

= u x x u x , x ??? u b x ,Ž . Ž . Ž .Ý d p Ž1. 2 d p Ž1. p Ž2. d p Ž <C <.ž /
Ž .p C
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where now the last sum is taken over all permutations p of C. Integrating
� 4n Ž .with respect to the measures m and recalling 2.5 , we geti is1

n H m , dŽ .i
E G GŁG x bž /ž /2is1

H m , dŽ .is EÝ ŁG ž /ž /2igB� 4BjCs 1, 2, . . . , n

2.19Ž .

= u x x u x , x ??? u b x dm x .Ž . Ž . Ž . Ž .Ý ŁH d p Ž1. 2 d p Ž1. p Ž2. d p Ž <C <. i iž /igCŽ .p C

Ž .We now show that we can take the limit as d ª 0 in 2.19 to get

n H mŽ .i
E G GŁG x bž /ž /2is1

H mŽ .is EÝ ŁG ž /ž /2igB� 4BjCs 1, 2, . . . , n

2.20Ž .

= ux x u x , x ??? ub x dm x .Ž . Ž . Ž . Ž .Ý ŁH p Ž1. p Ž1. p Ž2. p Ž <C <. i iž /igCŽ .p C

Ž . Ž . 2To see this, we note that, since H m , d ª H m in L , there exists ai i
Ž . Ž . 2Ž .sequence d ª 0 such that H m , d ª H m almost surely and EH m , dj i j i i j

2Ž .F CEH m for some constant C, for all 1 F i F n. Also, for all integers m,i
Ž w x.by the hypercontractivity of the Gaussian chaos see e.g., 1 ,

1r21rmm 2E H m , d F C E H m , dŽ . Ž .Ž . Ž .G i j m G i j
2.21Ž .

1r2X 2F C E H m .Ž .Ž .m G i

Ž .It follows from 2.21 and multiple uses of the Schwarz inequality that the
Ž .terms involving the Gaussian chaoses in 2.19 are uniformly integrable and

we can take the limits as d ª 0. This also shows that the limit as d ª 0 ofj j
Ž .the last integral in 2.19 exists and since it is monotonically increasing it is

Ž .equal to the last integral in 2.20 . Also, since the terms involving the
Ž .Gaussian chaoses are bounded, the integrals in 2.20 can be seen to be

bounded by induction on n. However, it is easy to see this directly since h and
Um , 1 F i - `, are bounded and r has compact support.i

We will show below that

E x r h L m iŁ `ž /
igC

1
s u x , x u x , x ??? ub x dm x .Ž . Ž . Ž . Ž .Ý ŁH p Ž1. p Ž1. p Ž2. p Ž <C <. i ih xŽ . igCŽ .p C

2.22Ž .



PATH PROPERTIES OF ADDITIVE FUNCTIONALS 1145

Ž .Integrating 2.22 with respect to r gives

E rr h L m iŁ `ž /
igC

s ux x u x , x ??? ub x dm x .Ž . Ž . Ž . Ž .Ý ŁH p Ž1. p Ž1. p Ž2. p Ž <C <. i i
igCŽ .p C

2.23Ž .

Ž . Ž .Using 2.23 in 2.20 , we see that
n H mŽ .i

E G GŁG x bž /ž /2is1

H mŽ .i r r h m is E = E LÝ Ł ŁG `ž /ž /ž /2igB igC� 4BjCs 1, 2, . . . , n

2.24Ž .

n H mŽ .ir r h m is E E L q .ŁG `ž /ž /2is1

Ž . w x w xThis is equivalent to 4.34 of 14 in the case of Example 2, Section 4 of 14 .
Theorem 1.5 now follows from the last paragraph of the proof of Theorem 4.1

w xof 14 .
Ž . Ž . w x y i m iTo obtain 2.22 , consider 4.28 of 14 with L replaced by L . Thus H` ` n

w xin 14 becomes

H s H m , . . . , mŽ .n n 1 n

` ` `
m m m1 2 ns dL dL ??? dL .H H Hr r r1 2 n

0 r r1 ny1

Ž . Ž . w x Ž .To obtain the analog of 4.30 and 4.31 of 14 , follow the argument of 4.30
w x w xof 14 and use Theorem 3.1, Chapter 6 of 4 to get

`1
x r h m x m1 1E L s E h X dLŽ .Ž . H` r rž /h xŽ . 0

Uhm xŽ .1s
h xŽ .

2.25Ž .

1
s u x , x ub x dm x ,Ž . Ž . Ž .H 1 1 1 1h xŽ .

Ž . Ž .since ub ? s h ? . Continuing a proof by induction, we now assume that
ny11

x r h2.26 E H s u x , x u x , x ??? ub x dm xŽ . Ž . Ž . Ž . Ž . Ž .ŁHny1 1 1 2 ny1 i ih xŽ . is1

Ž . w Ž .and let H ' H m , . . . , m . Note that H in the line above 4.32 ofny1, 2 ny1 2 n n
w x x Ž . w x14 should be H . Following 4.33 of 14 , we getny1

`1
x r h x r h X r h mr 112.27 E H s E E H dL ,Ž . Ž . Ž .Hn ny1, 2 r1ž /h xŽ . 0
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Ž .and proceeding as in 2.25 , we get

1
x r h x r h12.28 E H s u x , x h x E H dm x .Ž . Ž . Ž . Ž . Ž . Ž .Hn 1 1 ny1, 2 1 1h xŽ .

Ž . Ž . Ž .Using 2.26 in 2.28 , we get 2.22 . This completes the proof of Theorem 2.1.
I

2 Ž .Let MM be a family of measures contained in GG l Rev X . We present a1
slightly different version of the isomorphism theorem to use in studying the

� m Ž . q 4moduli of continuity of L s L , t, m g R = MM . Let l be an exponentialt
random variable with mean a , which is independent of the Markov process
X. We consider L m, which is simply L m, with t replaced by the independentl t

� Ž .stopping time l. We associate with L a second-order Gaussian chaos H m ,a

4 Ž .m g MM which is defined exactly the same way as H m was in the beginning
Ž . Ž . a Ž .of this section, except that in place of u x, y in 2.1 we use u x, y .

THEOREM 2.2. Let f be a positive function on S such that f ? m g GG1.a
1 m Ž .Assume that U m is bounded for each m g MM and that L and H m are bothl a

Ž . 2in C MM , the set of continuous functions on some compact subset MM : GG .a

Then, for any compactly supported r g GG1 and any nonnegative Borel-mea-a

Ž .surable function F on C MM , we have

1 1r m2.29 E E E F L q H m f X s E F H m G G .Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .G l l a l G a r f?m2 2

PROOF. The proof is similar to the proof of the isomorphism theorem for
w xExample 1 given in Section 4 of 14 . I

Ž . Ž .REMARK 2.1. We explain why we call H m, d and H m Gaussian chaoses.
� 4̀Let T be some index set and let g be independent, identically dis-n ns1

tributed normal random variables with mean 0 and variance 1. We say that a
� Ž . 4stochastic process x t , t g T is a second-order Gaussian chaos if it can be

written in the form

2.30 x t s g g w t q g 2 y 1 w t , t g T ,Ž . Ž . Ž . Ž .Ž .Ý Ýj k j , k j j , j
j/k j

where we assume that the series converges in L2 for each t g T. Since we
will only be concerned with second-order chaoses, we will not bother to repeat

Ž . Ž .the words ‘‘second order’’ when discussing them. H m, d , defined in 2.5 , is a
2 �Gaussian chaos on GG . To see this, we note that the Gaussian process G ,r

14r g GG can be written in terms of its Karhunen]Loeve expansion. Therefore,`
in particular, we can consider the Gaussian process

2.31 G s g w r , x g S.Ž . Ž .Ýx , d j j x , d
j
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Ž .Referring to 2.5 , we see that

H m , d s g g w r w r dm xŽ . Ž . Ž . Ž .Ý Hj k j x , d k x , d
j/k

q g 2 y 1 w 2 r dm x .Ž . Ž .Ž .Ý Hj j x , d
j

2.32Ž .

Since the L2 limit of a Gaussian chaos is a Gaussian chaos, by Theorem 3.1 of
w x Ž . � Ž . 241 , we see that H m is a Gaussian chaos. In fact, H m , m g GG has an

Ž . 2expansion as in 2.30 for m g GG , although we do not know what it is
explicitly.

w x 2Note that in 1 a Gaussian chaos is defined as the closure in L of
Ž .expressions of the form 2.30 . Here we are using the definition of Gaussian

w x w xchaos given in 9 . It follows from Theorem 3.1 of 1 that the two definitions
are equivalent.

REMARK 2.2. The continuity condition for Gaussian chaoses given in
w xTheorem 1.2 is contained in Theorem 11.22 of 9 . To see this, it is only

Žnecessary to note that the metric d is smaller than the metric d in the2 1
w x.notation of 9 .

3. Continuity theorems. In this section we give the proofs of Theorems
1.1 and its refinements, Theorems 3.1 and 3.2.

PROOF OF THEOREM 1.1. We first consider the case a s 0. Recall that we
are denoting h , u0, U 0, GG1, GG 2 and so on by h, u, U, GG1, GG 2 and so forth.0 0 0

Ž . Ž .Let us also recall that, by 2.13 and 2.25 ,

Uhm xŽ .
x r h m3.1 E L s ,Ž . Ž .` h xŽ .

and, for r g GG1 a probability measure with compact support,

P rr h ? s P x r h ? dr x .Ž . Ž . Ž .H
By working locally it suffices to consider MM compact. Let DD : MM be a

w xcountable dense set. Using the proof of Theorem 6.1 of 14 together with a
version of Dynkin’s isomorphism theorem, Theorem 2.1 of this paper, we can

m q� Ž . 4see that L , t, m g R = DD is uniformly continuous almost surely witht
rr h q qw xrespect to P , where R s 0, ` is the compactification of R obtained by

yx qŽ w xadding the point at `. Thus, e : R ¬ 0, 1 is an isomorphism of compact
.sets.

Let

m q˜ <3.2 V s v L v is uniformly continuous on R = DD .Ž . Ž .� 4t
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We have that

x r h ˜ rr h ˜3.3 P V dr x s P V s 1Ž . Ž .Ž . Ž .H
for all finite measures r g GG1 with compact support.

x r h ˜� < Ž . 4 Ž . ŽLet Q s x P V - 1 . By 3.3 and standard arguments see the dis-
w x.cussion on page 285 of 4 , we see that Q is a polar set.

We henceforth restrict our Markov process and measures to S y Q, noting
that under our assumptions the measures in MM do not charge polar sets.
Thus, in effect, we are considering a Markov process defined on S s S y Q
for which

x r h ˜3.4 P V s 1 ; x g S.Ž . Ž .
m q m q˜� Ž . 4 � Ž . 4We then extend L , t, m g R = DD to L , t, m g R = MM by continuity.t t

Since we may assume that the L m are perfect continuous additive functionalst
˜ mfor all m g DD, we immediately see that the same is true for L for eacht

˜ m mm g MM. We now show that L is a version of L for the h-transformedt t
˜ mw xprocess. For this, by Theorem 36.3 of 17 , it suffices to show that L has thet

same potential as L m, that is, thatt

Uhm xŽ .
x r h m˜3.5 E L s ; x g S.Ž . Ž .` h xŽ .

˜ m Ž .By the definition of L , 3.5 holds for all m g DD, and, for any m g MM, if wet
` ˜ m i ˜ m� 4choose a sequence m of measures in DD such that m ª m, then L ª Li is1 i ` `

Ž . Ž . Ž .almost surely. Since, by assumption i of this theorem, Uhm x ª Uhm x ,i
˜ m i `Ž . � 4we can complete the proof of 3.5 by showing that L are uniformly` is1

˜ m i `� 4integrable. For this it suffices to show that L are uniformly bounded in` is1
2 x r h Ž .L with respect to P . This is easily seen since by 2.22 we have

22x r h m i˜3.6 E L s U Uhm m x ,Ž . Ž . Ž .Ž .Ž .` i iž / h xŽ .
Ž .which is uniformly bounded in i by assumption i .

˜ mŽ .Redefine L v by setting it equal tot

˜ m3.7 lim inf L vŽ . Ž .s
Ž .s z v

s rational

˜ mŽ . w xfor all t G z v . As in the proof of Theorem 6.1 of 14 , we see that L andt
m w . xL agree on 0, z , P almost surely. We now see that the above limit inferiort

˜ m m q ˜ mŽ . Ž .is a true limit and that L v s L v for all t g R . Therefore L is at t t
version of L m for the Markov process X. Finally, as in the proof of Theoremt

x r h m q˜w x � Ž .6.1 of 14 , we see that the P almost sure continuity of L , t, m g R =t
x ˜ m4 � Ž . w . 4MM implies the P almost sure continuity of L , t, m g 0, z = MM . Thist

completes the proof in the case a s 0.
We now give the proof for a s 1. The proof for any other a ) 0 is similar.

Let X be a Markov process which satisfies the hypotheses of this theorem in
the case a s 1. Let Y be the Markov process obtained by killing X at an
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Ž x .independent exponential time l with mean 1. Let V, FF, P be the probabil-
Ž q x . Ž .ity space of X. As usual, we take V = R , FF = BB, P = t , where t dt s

yt Ž . Ž .e dt, to be the probability space for Y, where Y v, l s X v for t - l andt t
Ž .Y v, l s D, the cemetary state, for t G l. It is easy to check that thet

0-potential density of Y and the 1-potential density of X are equal and that
Y satisfies the hypotheses of this theorem with a s 0. Furthermore, we can
check that if L m is a continuous additive functional of X with 1-potentialt
U 1m, then L m is a continuous additive functional of Y with 0-potential U 1m.t n l

We have already proved this theorem in the case a s 0. Therefore, for
q m q<V s v , l g V = R L v is uniformly continuous on R = DD ,Ž . Ž .� 4t n l

we have

3.8 P x r h = t V s 1 ; x g S y QŽ . Ž . Ž .
for some polar set Q : S. We restrict X, and consequently Y, and the
measures MM to S y Q and thus can consider that both X and Y have state
space S s S y Q.

Let

ˆ m q<V s v L v is locally uniformly continuous on R = DD� 4Ž .t

ˆ qand note that V = R : V. Fubini’s theorem and a monotonicity argument
now show that

x r h ˆ3.9 P V s 1 ; x g S.Ž . Ž .
ˆ ˆ m� Ž . Ž .From the definition of V, we see that, for each v g V, L v , t, m gt

q 4R = DD can be extended to a locally uniformly continuous stochastic process
ˆ m q ˆ m ˆ c� Ž . Ž . 4 Ž .L v , t, m g R = MM . Set L v s 0 for v g V . By taking the limit overt t

ˆ msequences of measures in DD, we see that L is a continuous additivet
functional for each m g MM.

ˆ m 1Ž Ž .. Ž .We now show that L has 1-potential U hm x rh x with respect to thet
� mŽ . Ž .h-transform of X and consequently is a continuous version of L v , t, mt

q 4g R = MM . According to the proof in the case a s 0 applied to the h-trans-
m q q� Ž . Ž . 4form of Y, L v , t, m g R = DD has a continuous extension to R = MMt n l

q m qˆ ˜Ž . � Ž . Ž .for all v, l g V = R . We denote this extension by L v, l , t, m g R =t
4 Ž 1 Ž .. Ž .MM and recall that it has 0-potential U hm x rh x . Integrating by parts

and using Fubini’s theorem, we have
` `

x r h ys m x r h ys m˜ ˜E e dL v , s s E e L v , s dsŽ . Ž .H H` `ž / ž /0 0

x r h ˜ ms E = t L v , lŽ . Ž .Ž .`3.10Ž .

U 1hm xŽ .
s .

h xŽ .
m ˆ m ˆ qŽ . Ž .Clearly, L v, s s L v for all v g V and s g R , since both sides are` s

m m ˆ mŽ . Ž .continuous extensions of L v s L v for m g DD. Thus we see that L`n s s s
Ž 1 Ž .. Ž .has 1-potential U hm x rh x for the h-transform of X. The transition
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from the h-transformed process to the original process is the same as in the
case a s 0. This completes the proof of Theorem 1.1. I

The next theorem relates to Remark 1.2.

THEOREM 3.1. Let X be a Markov process as in Theorem 1.1 and let
MM : GG 2 be a set of measures with common compact support. Assume that wea

are given a topology OO for MM under which MM is locally compact and has a
countable base. Assume also that:

Ž . a Ž .i m ¬ U h m is a continuous map from MM to BB S ;Ža .
Ž . Ž .ii the associated second-order Gaussian chaos H m is continuous al-a

most surely on MM.

Then there exists a polar set Q : S such that, if we restrict X and MM to S y Q,
� m Ž . q 4we can find a continuous version of L , t, m g R = MM .t

a Ž .PROOF. The condition that m ¬ U m is a continuous map from MM to BB S
of Theorem 1.1 was used only to enable us to satisfy the requirement of the
isomorphism theorem that Uam is bounded for each m g MM and to obtain

Ž .upper bounds in 3.6 . Actually, we only used the weaker condition:

Ž X. a Ž . ai m ¬ U h m is a continuous map from MM to BB S and m ¬ U m is aŽa .
Ž .bounded map from CC to BB S for all compact sets CC ; MM; that is,

1 Ž .sup sup U m x - `.mg CC x g S

Ž X. a Ž .The first condition of i implies that sup sup U h m x - `. Thenmg CC x g S Ža .
Ž X. Ž .the second condition in i follows from this, since inf h x ) 0, whereK Ža .

K : S denotes a compact neighborhood containing the supports of all the
measures m g MM. The rest of the proof follows from the proof of Theorem 6.3

w x mof 14 and the fact that none of the continuous additive functionals L aret
Ž w x .increasing unless X g K. See Chapter 6, Theorem 3.1, of 4 . It

We now develop the material to explain Remark 1.1. Let G be a separable
locally compact group and let X be a Levy process in G, with a-potential´

a Ž . a Ž y1 .density u x, y s u xy . We will use the canonical representation for X
q Ž .in which V is the set of cadlag paths v: R ¬ G, X s v t andt

E x f v s E0 f v x .Ž . Ž .Ž . Ž .
For these processes L m denotes the continuous additive functional of Xt

a Ž . a Ž y1 . Ž .with a-potential U m x s Hu xy dm y . For each measure m on G and
x g G, we define the measure m to be the unique measure on G for whichx

g z dm z s g zxy1 dm zŽ . Ž . Ž . Ž .H Hx

Ž .for all bounded continuous functions g on G. Note that m s m andx y y x
Ž . Ž .m Ax s m A for all Borel sets A ; G. Let T denote the bijection on thex x

Ž .space of measures defined by T m s m . We say that a set MM of measuresx x
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on G is translation invariant if it is invariant under T for each x g G andx
that a topology OO on such a set MM is homogeneous if T is an isomorphismx
for each x g G.

The next theorem relates to Remark 1.1.

THEOREM 3.2. Let X be a symmetric Levy process in G and let MM : GG 2 be a´ a

translation-invariant set of measures on G. Assume that there is a homoge-
neous topology OO for MM under which MM is locally compact and has a
countable base and that:

Ž . a a Ž .i m ¬ U m and m ¬ U h m are continuous maps from MM to BB G ;Ža .
Ž . Ž .ii the associated second-order Gaussian chaos H m is continuous al-a

most surely on MM.

� m Ž . q 4Then there exists a continuous version of L , t, m g R = MM .t

PROOF. We give the proof in the case a s 1. The same proof is valid for all
a ) 0 and also for a s 0 for transient processes. For any x g G and m g MM,
set

A v s L m v x .Ž . Ž .t t

Clearly, A is a continuous additive functional. Computing its 1-potentialt

` `
y yt y yt mE e dA v s E e dL v xŽ . Ž .H Ht tž / ž /0 0

`
y x yt ms E e dL vŽ .H tž /0

s u1 yxzy1 dm zŽ .Ž .H3.11Ž .

y11 y1s u y zx dm zŽ . Ž .H ž /
s u1 yzy1 dm z ,Ž .Ž .H x

we see that

3.12 L m v x s L mx v a.s.Ž . Ž . Ž .t t

for each x g G and m g MM.
Let DD : MM be the countable dense set of measures that enters into the

� m Ž . qproof of Theorem 1.1. The proof of Theorem 1.1 shows that L , t, m g R =t
4 a cDD is locally uniformly continuous, P almost surely, for all a g Q , where

mŽ .Q g G is a polar set. As in Theorem 1.1, we extend L v by continuity tot
˜ m q c� Ž . Ž . 4L v , t, m g R = MM for all paths v starting in Q . However, this proce-t

˜ m q� Ž . 4dure provides no way to extend L , t, m g R = MM to paths v starting int
Q. That is why, in Theorem 1.1, we found it necessary to restrict the Markov
process to Qc. In this theorem we use the translation invariance of MM to

˜ m q� Ž . 4extend L , t, m g R = MM to paths v starting in Q.t
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Ž .We can assume that 3.12 holds for all m g DD, almost surely. Therefore, by
continuity, we have that

˜ m ˜ mx y3.13 L v x s L v ; m g MM , P a.s.Ž . Ž . Ž .t t

for each x g G and y g Qc such that yx g Qc. This suggests how we can
˜ m q c� Ž . 4extend L , t, m g R = MM to paths v starting in Q. Fix a g Q and fort

each path v starting at a and each y g Q set

˜ m y1 ˜ may 1 y3.14 L v a y s L v .Ž . Ž .Ž .t def t

We note that v ¬ v ay1 y is a bijection from the set of cadlag paths in G
starting at a to those paths starting at y.

˜ m q� Ž . 4We must verify that with this definition L , t, m g R = MM satisfies thet
requirements of this theorem, that is, it is continuous almost surely, and

˜ mthat, for each m g MM, L is a continuous additive functional of X witht
1-potential U 1m.

˜ m q� Ž . 4We first show that L , t, m g R = MM are continuous additive function-t
als for the Levy process X. The only part requiring proof is the additivity:´

˜ m ˜ m ˜ m y3.15 L v s L v q L u v , P a.s.Ž . Ž . Ž . Ž .tqs t s t

for all y g G and m g MM.
c Ž .If y g Q , 3.15 follows by continuity since it holds for all m g DD. Note

Ž . Ž . c ythat, since Q is a polar set, u v 0 s v t g Q , P almost surely.t
Ž . aConsider now that y g Q. By definition 3.14 we have that, P almost

surely,

˜ m y1 ˜ may 1 yL v a y s L vŽ .Ž .tqs tqs

˜ may 1 y ˜ may 1 ys L v q L u vŽ . Ž .t s t3.16Ž .
˜ m y1 ˜ may 1 ys L v a y q L u v .Ž .Ž .t s t

Ž .Assume that 3.13 holds without restriction on x g G, that is, that

˜ m ˜ mx y3.17 L v x s L v ; m g MM P a.s.Ž . Ž . Ž .t t

for each x g G and y g Qc. Then, using the Markov property, we see that
a ˜ m y1 ˜ may 1 yP L u v a y s L u vŽ .Ž .Ž .s t s t

a X t ˜ m y1 ˜ may 1 ys P P L v a y s L vŽ .Ž .Ž .ž /s s
3.18Ž .

s 1.
Ž .The final equality follows from 3.17 , since, by the polarity of Q, we have

c a Ž . Ž .X g Q , P almost surely. Using 3.16 and 3.18 , we see thatt

˜ m y1 ˜ m y1 ˜ m y1 a3.19 L v a y s L v a y q L u v a y , P a.s.,Ž . Ž . Ž . Ž .tqs t s t

Ž .which is equivalent to 3.15 .
˜ m 1To show that L has 1-potential U m, we note that, by Theorem 1.1,t

`
y yt m 1˜3.20 E e dL v s U m yŽ . Ž . Ž .H tž /0
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Ž .for all y g G y Q, and, since both sides of 3.20 are excessive functions, they
w x wwill be equal for all y g G by Theorem 3.2, Chapter 2 of 4 . Alternately, we

Ž . xcan use the calculation in 3.11 . Again, by Theorem 1.1, since z s ` for Levy´
˜ m q y� Ž . 4processes, L , t, m g R = MM is jointly continuous, P almost surely, fort

Ž .all y g G y Q and hence for all y g G by definition 3.14 and the fact that Tx
is an isomorphism for each x g G.

Ž . cWe now return to the proof of 3.17 . If yx g Q , this is precisely the
Ž . Ž .content of 3.13 . If yx g Q, then by 3.14 we have

˜ m y1 ˜ may 1 y x a3.21 L v a yx s L v , P a.s.Ž . Ž .Ž .t t
c Ž y1 . c Ž .Now, since both a g Q and a a y s y g Q , it follows from 3.13 that

˜ mx y1 Ž̃ m x .ay 1 y ˜ may 1 y x a3.22 L v a y s L v s L v , P a.s.Ž . Ž . Ž .Ž .t t t

Ž . Ž .Combining 3.21 and 3.22 , we obtain

˜ m y1 ˜ mx y1 aL v a yx s L v a y , P a.s.,Ž . Ž .t t

Ž .which is equivalent to 3.17 . I

4. Local times. In this section we explain how local times fit into our
framework. Suppose that the Markov process X has a local time. Consider

˜ � 4the set of measures MM s d , a g S , where d denotes the unit point mass ata a
a. We set Lda s La and note that it is the ordinary local time of X at a. Lett t

˜� Ž . 4H d , d g MM be the associated Gaussian chaos. When a Markov process1 a a
has a local time, continuity of the local time and the associated Gaussian
chaos are equivalent, and we obtain the results discussed in Remark 1.5.

Let
1r2

h 1
4.1 T d , MM s lim sup log d« ,Ž . Ž . Hs def ž /s B t , «hª0 Ž .Ž .0 dtgMM

where d, s , MM and B are defined in Theorem 1.2.

THEOREM 4.1. Let X be a Markov process as in Theorem 1.1 with state
space S and assume that a local time exists for X at all points a g S. Then the
following are equivalent:

Ž . � a 4i L , a g S has a continuous version almost surely;t
˜Ž . � Ž . 4ii H d , d g MM has a continuous version almost surely;1 a a

˜Ž .iii for all compact subsets MM of MM, there exists a probability measure s
Ž .on MM such T d, MM s 0.s

n n Ž .Furthermore, if X is a Levy process in R , or T , iii can be replaced by´
X ˜Ž . Ž .iii J d, MM - ` for all compact subsets MM of MM.

PROOF. It is enough to prove this theorem for S compact. In this case we
˜can take MM to be compact and we denote it by MM. If X has a local time for all

1Ž . Ž w x .x g S, then u x, x - ` for all x g S. See, e.g., Theorem 3.2 of 14 . In this
� Ž . 4case the Gaussian process G d , d g MM , defined in Section 2, is the samea a
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� Ž . 4 1Ž . Žas the Gaussian process G a , a g S with covariance u x, y . As we
.remarked in Section 2 the construction can be carried out for all a . It follows

w x � a 4from Theorem 1 of 14 that L , a g S has a continuous version almostt
� Ž . 4surely if and only if G a , a g S is continuous. We see from the construction

Ž . da a Ž . 2Ž . 2Ž .of the chaos H d associated with L s L that H d s G a y EG a .1 a t t 1 a
� Ž . 4 � Ž . 4Thus, obviously, H d , d g MM is continuous if and only if G a , a g S is1 a a

Ž . Ž .continuous. Thus we see that i and ii are equivalent.
� Ž . 4A necessary and sufficient condition for the continuity of G a , a g S is

Ž .that there exists a probability measure s on S such that T r, S s 0, wheres

1r21 1 14.2 r x , y s u x , x q u y , y y 2u x , y .Ž . Ž . Ž . Ž . Ž .Ž .
Ž .For the measures in MM, the metric defined in 1.12 is

1r22 2 21 1 1d d , d s u x , x q u y , y y 2 u x , yŽ . Ž . Ž .Ž . Ž . Ž . Ž .ž /x y

1 1 1'F 2 u x , x y u x , y u x , xŽ . Ž . Ž .Ž .Ž
1r21 1 1q u y , y y u x , y u y , yŽ . Ž . Ž .Ž . .4.3Ž .

1r21'F 2 sup u x , x r x , yŽ . Ž .Ž .
xgS

F C r x , y .Ž .1

Similarly,
1r21d d , d G inf u x , x r x , yŽ . Ž .Ž . Ž .x y

xgS

G C r x , y .Ž .2

Ž w x .We know that C ) 0. See, e.g., Lemma 3.6 of 14 . Thus, if there exists a2
Ž . Ž .probability measure s on S such that T r, S / 0, then T d, MM / 0. Ons s

the other hand, if there exists a probability measure s on S such that
Ž . � a Ž . q4T r, S s 0, then L , a, t g S = R is continuous and hence, by Theorems t

w x 1Ž .3.7 of 14 , u x, x is continuous on S. Hence C - ` and consequently1
Ž . � Ž . 4T d, MM s 0. Since G a , a g S is continuous if and only if there exists as

Ž . Ž .probability measure s on S such that T r, S s 0, it follows that ii ands

Ž .iii are equivalent.
Ž . n nIt is clear from the first line of 4.3 that d is also a metric on R , or T .

Ž .Thus we can write 4.1 as
1r2

h 1˜ w x4.4 T d , 0, 2p s lim sup log d« ,Ž . Ž . Hl ž /l B t , «hª0 Ž .Ž .0w x dxg 0, 2p

w xwhere l is a probability measure on 0, 2p . Furthermore, if X is a Levy´
process d is translation invariant. It is well known that for translation-

n n Ž .invariant metrics on R and T we can take the measure l in 4.4 to be
˜ Ž w x.normalized Lebesgue measure and that T d, 0, 2p s 0 if and only ifl

Ž w x.J d, 0, 2p - `. However, now considering d as a metric on MM, we see that
Ž w x. Ž . n n Ž .J d, 0, 2p s J d, MM . Thus, when X is a Levy process in R , or T , iii´

Ž X.can be replaced by iii . I
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5. Levy processes in Rn. We now specialize to Levy processes in Rn´ ´
� n4and families of measures MM s m , x g R which consist of translates of ax

fixed measure m on Rn. We first develop material leading to the proof of
Theorem 1.3. We then prove Theorem 1.6 and lastly consider the relationship

Ž .between the 1-potential and the metric entropy integral 1.15 .
Let us define

V x , . . . , x zŽ . Ž .h 1 k

k
1 1 1s u z , y u y , y ??? u y , y h y dm y ,Ž . Ž . Ž . Ž . Ž .Ý ŁH 1 1 2 ky1 k k x ip Ž i .

is1p

5.1Ž .

� 4where the sum runs over all permutations p of 1, . . . , k . Note that

V x z s U 1hm zŽ . Ž . Ž .h x

Ž .Ž .and also that functions such as V x , . . . , x z arise in the proof of theh 1 k
Ž .isomorphism theorem, as in 2.26 . The next theorem is used in the proof of

Theorem 1.3.

� q4 nTHEOREM 5.1. Let X s X , t g R be a symmetric Levy process in R .´t
2 n � Ž . n4Let m g GG be a finite measure on R . If H m , x g R is continuous1 1 x

1 Ž n.almost surely, then for any h s U f , where f g SS R is strictly positive,
1 n Ž n.x ¬ U hm is a bounded and uniformly continuous map from R to BB R ,x

and, more generally,

� 45.2 x , x , . . . , x ¬ V x , . . . , x zŽ . Ž . Ž .1 2 k h 1 k

Ž n.k Ž n.is a bounded and uniformly continuous map from R to BB R .

PROOF. We will first show that x ¬ U 1hm is a bounded and uniformlyx
n Ž n.continuous map from R to BB R . That is,

5.3 sup U 1hm z - `Ž . Ž .x
nx , zgR

for each x g Rn, and
1 15.4 lim sup sup U hm z y U hm z s 0.Ž . Ž . Ž .x y

ndª0 < < zgRxyy Fd

Ž . Ž .Let us assume first that m s g x dx, where g x is bounded and uni-
formly continuous. In particular, this guarantees that

s
m nx5.5 L s g X q x dr , x g R ,Ž . Ž .Hs r

0

1 Ž .is continuous almost surely and has bounded 1-potential U g ? , wherex
Ž . Ž . 1 Ž .g ? s g x q ? . We now obtain bounds on U hm in terms of H mx def ? 1 ?

which will extend to all finite m g GG 2.1
We begin by noting that

5.6 U 1hm z s E z L m f X s E y L mzy y f X .Ž . Ž . Ž . Ž .Ž . Ž .l l l l l zyy l
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m Ž .The first equality is particularly easy to see for L of the form 5.5 . Thet
second inequality follows by a change of variables.

� n < < < 4 Ž .Let B s x g R x F r . As in 5.6 , for x, z, v g B we have thatr 1

5.7 U 1hm z s E v L mxq zyv f X .Ž . Ž . Ž .Ž .x l l zyv l

Therefore

1 v m z ˜5.8 sup U hm z F E sup L f X ,Ž . Ž . Ž .x l l lž /
zgB zgxqB1 2

where
˜5.9 f x s sup f x .Ž . Ž . Ž .z

zgB2

d ˜Ž .We note that, since f g SS R , f has the property that

1 ˜ ˜5.10 u x , y f x f y dx dy - `.Ž . Ž . Ž . Ž .HH
Ž . Ž .Therefore, integrating 5.8 with respect to dm v restricted to B and using1

the isomorphism theorem, Theorem 2.2, and the stationarity of H , we see1
that

15.11 sup U hm z F C sup H m ,Ž . Ž . Ž .x 1 z
zgB zgB1 2 2

uniformly in x g Rn. Finally, using the stationarity of H again and the fact1
that

5.12 U 1h m z s U 1hm z q yŽ . Ž . Ž .y xqy x

˜ ˜Ž . Ž .and that 5.10 is unchanged if we replace f by f , we see that 5.11 givesy

15.13 U hm z F C sup H mŽ . Ž . Ž .x 1 z
zgB2 2

for all x, z g Rn.
Ž .Similarly, for x, y, z, v g B we have, as in 5.6 , that1

5.14 U 1hm z y U 1hm z s E v L mxq zyv y L m yq zyv f X .Ž . Ž . Ž . Ž .Ž .Ž .x y l l l zyv l

Hence

1 1 v m x m y ˜sup U hm z y U hm z F E sup L y L f X ,Ž . Ž . Ž .Ž .x y l l l lž /< < < <xyy Fd xyy Fd
x , y , zgB x , ygB1 3

˜ Ž .where f is defined in 5.9 . As above, the isomorphism theorem, Theorem 2.2,
now shows that

1 15.15 sup U hm z y U hm z F C sup H m y H mŽ . Ž . Ž . Ž . Ž .x y 1 x 1 y
< < < <xyy Fd xyy Fd

2x , y , zgB x , ygB1 3
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Ž .and that 5.15 implies that

1 15.16 sup U hm z y U hm z F C sup H m y H mŽ . Ž . Ž . Ž . Ž .x y 1 x 1 y
< < < <xyy Fd xyy Fd

2x , ygB3

for all z g Rn.
We now prove the assumption, that m has a bounded uniformly continuous

Ž . Ž . Ž .density, in 5.13 and 5.16 . Let b x be a positive continuous and symmetric
Ž .function supported on B with Hb x dx s 1. Let1

1 x
gb x s bŽ . d ž /gg

g g g Ž . g Ž . g Ž . Ž .and set m s m) b s g x dx. Note that g x s Hb x y y m dy is
bounded and uniformly continuous when m is a finite measure. We apply
Ž . g5.13 with m replaced by m to obtain

1 g gsup U hm z F C sup H mŽ . Ž .x 1 x
n xgBxgR 2 2

gs C sup H m ) b xŽ . Ž .1 ?
xgB2 2

5.17Ž .

F C sup H m .Ž .1 x
xgB3 2

Ž .In the second line of 5.17 we use the fact that

5.18 H mg s H m ) bg x ,Ž . Ž . Ž .Ž .1 x 1 ?

Ž .which follows easily from 2.9 .
Ž .We now take the limit in 5.17 as g ª 0. We show below that, for any

x g Rn,
5.19 U 1hmg z ª U 1hm zŽ . Ž . Ž .x x

1Ž n .in L R , dz as g ª 0. Therefore for some subsequence g ª 0 we havek

5.20 U 1hmgk z ª U 1hm zŽ . Ž . Ž .x x

for almost all z with respect to Lebesgue measure. This implies that

15.21 U hm z F C sup H mŽ . Ž . Ž .x 1 x
xgB3 2

1 Ž . Ž .for almost all z. However, since U hm z is 1-excessive, it follows that 5.21x
holds for all z.

Ž .Let us now prove 5.19 . It suffices to consider the case x s 0. Since

5.22 U 1hmg z s U 1hm z bg x dx ,Ž . Ž . Ž . Ž .H x

1 Ž .it is enough to show that x ¬ U hm z is a bounded and uniformly continu-x
n 1Ž n .ous map from R to L R , dz . To see this, it suffices to note that

5 1 5 5 5 n5.23 U hm F h y m dy F h m RŽ . Ž . Ž . Ž .1 H `x x
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and
5 1 1 5U hm y U hm 1x

1 1s u z y y h y m dy y u z y y h y m dy dzŽ . Ž . Ž . Ž . Ž . Ž .H H Hx

1 1s u z y y y x h y q x m dy y u z y y h y m dy dzŽ . Ž . Ž . Ž . Ž . Ž .H H H5.24Ž .

1 1 nF sup u z y y y x h y q x y u z y y h y dz m RŽ . Ž . Ž . Ž . Ž .Hž /nygR

5 1 1 5 5 5 5 1 5 5 5 nF u y u h q u h y h m R .Ž .Ž .1 ` 1 `x x

Similarly, we can now remove the assumption, that m has a bounded
Ž .uniformly continuous density in 5.16 , by arguing exactly as above, with

1 1 Ž . 1 Ž . Ž .respect to the L -function z ¬ U hm z y U hm z . This shows that 5.16x y
2 Ž . Ž .holds for all finite m g GG . This completes the proof of 5.13 and 5.16 in the1
Ž . Ž .general case, and verifies 5.3 and 5.4 .

Ž .We now prove that 5.2 is bounded and uniformly continuous. As above,
Ž . Ž .let us assume first that m s g x dx, where g x is bounded and uniformly

continuous. Note that
k

z m x iV x , . . . , x z s E L f XŽ . Ž . Ž .Łh 1 k l l lž /is1
5.25Ž .

k
y m x qzyyis E L f X .Ž .Łl l zyy lž /is1

m? Ž . w Ž . xThe first equality is straightforward for L of the form 5.5 . See also 2.22 .t
The second equality follows by a change of variables. Therefore

k
v m z ˜isup V x , . . . , x z F E sup L f X ,Ž . Ž . Ž .Łh 1 k l l lž /is1zgB z gx qB1 i i 2

where, as before,
˜5.26 f x s sup f x .Ž . Ž . Ž .z

zgB2

As above, Theorem 2.2, Holder’s inequality and the stationarity of H show¨ 1
us that

k5.27 sup V x , . . . , x z F C sup H m ,Ž . Ž . Ž . Ž .h 1 k 1 x
zgB zgB1 2 2

� 4 Ž n.kuniformly in x , . . . , x g R . Again, by stationarity, as above, we see1 k
that

k5.28 sup V x , . . . , x z F C sup H m ,Ž . Ž . Ž . Ž .h 1 k 1 x
n zgBzgR 2 2

� 4 Ž n.kuniformly in x , . . . , x g R . The assumption that m has a bounded1 k
uniformly continuous density can be removed exactly as before. This shows

Ž .that 5.2 is bounded. The proof of uniform continuity is similar. I
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1 Ž .PROOF OF THEOREM 1.3. By Theorem 5.1, U h m z is bounded so thatŽ1.
Ž . � 4̀ nm g Rev X . Let x be a sequence of points in R . We will first show thati is1

the version of the isomorphism theorem, Theorem 2.1, still holds if we take
� 4̀ � 4̀m for the sequence of measures m , even without the assumptionx is1 i is1i 1 Ž . nthat the U m z are bounded on R . We first note that, for each i,x i

5.29 U 1m x - ` q.e. x ,Ž . Ž .x i

Ž . 1 1 Ž . Ž .which follows from the fact, 1.10 , that m g GG so that HU m x dr x - `x 1 xi i1 Ž w x .for all r g GG . See, e.g., Theorem 3.3.2 of 6 . Furthermore,1

1t
m h ?mŽ1.5.30 L s dL ,Ž . Ht sh XŽ .0 Ž1. s

since both sides are continuous additive functionals with the same Revuz
Ž . w xmeasure m. Together with 5.29 and Theorem 3.1, Chapter 6, of 4 , this

shows that

5.31 E x L mx i s U 1m x - ` q.e. x .Ž . Ž .Ž .` x i

This, together with Theorem 5.1 which enables us to control the integrals in
Ž . Ž .2.26 , allows us to establish 2.22 for q.e. x which is sufficient to establish
the isomorphism theorem, Theorem 2.1.

We then follow the proof of Theorem 1.1. Here, the assumptions of that
1 Ž . Ž .theorem concerning U m z are used only in bounding 3.6 , and, once again,x

Theorem 5.1 allows us to do this. Finally, in the proof of Theorem 3.2 we can
Ž . m hŽ1.?m Ž .use the relationship 5.30 between L and L to establish 3.12 and tot t

˜ midentify L . Putting all this together completes the proof of Theorem 1.3. It

PROOF OF THEOREM 1.6. By Theorem 1.2, Remark 1.4 and Theorem 1.3,
Ž . Ž . Ž .we need only show that 1.14 holds with d s d . By 1.12 and 1.25 ,1

1r2
j h 225.32 d y q h , y s 2 sin g j m j dj .Ž . Ž . Ž . Ž .ˆH1 ž /n 2jgR

w Ž . Ž . xRecall that d y q h, y s d m , m . For x G 0 define1 1 y yqh

2
5.33 F x s g j m j djŽ . Ž . Ž . Ž .ˆH

< <j Fx

and note that
1r2

< <1r h2 2< < < <d y q h , y F C h u dF u q 1 y F 1r hŽ . Ž . Ž .Ž .H1 ž /5.34Ž . 0

< <' f h .Ž .
w x w Ž . xA slight modification of the argument on pages 152 of 7 take z u s 1ru

w x Ž .or of the proof of Lemma 1.1, Chapter 7, of 10 shows that 1.26 implies that

< <f uŽ .1
5.35 du - `.Ž . H u0
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Ž . Ž . ŽIt is easy to see that 5.35 implies that 1.14 holds. See, e.g., Lemma 5.3,
w x w x .Chapter 4, of 7 or the proof of Lemma 3.6, Chapter 2, of 10 . I

Ž . Ž .The equivalence of i and ii in Theorem 1.5 is a surprising relationship
between the 1-potential of a Levy process in T n and the square-root metric´
entropy of the Gaussian chaos associated with certain of its continuous
additive functionals. In the next theorem we see that a similar result holds
for processes and measures in Rn.

THEOREM 5.2. Let X be a Levy process in Rn with characteristic sequence´
c and let m be a finite measure on Rn, n s 2, 3. Assume that:

Ž . Ž .i m j G 0;ˆ
Ž . Ž . Ž .ii c j and m j are radially symmetric;ˆ
Ž .iii there exist constants 0 - C , C - ` such that1 2

g j 1 g jŽ . Ž .
C F F Cn n1 22< < < <j j1 q c jŽ .Ž .

< <for j G 1;
Ž . � 4̀iv there exist a decreasing sequence a of positive numbers andj js1

constants 0 - CX , CX - ` such that1 2

< <nj m jŽ .ˆX XC a F F C a1 j 2 j1 q c jŽ .
jy1 < < jfor 2 F j F 2 .

Then

1r21 35.36 U m 0 - ` m log N R , « d« - `.Ž . Ž . Ž .HŽ .d1

w xWe use Boas’s lemma, Lemma 2.2, Chapter 4, of 7 .

� 4̀LEMMA 5.1. Let s be a sequence of positive real numbers. Supposej js1
s x as j ª `. Then there exist constants 0 - C , C - ` such thatj 1 2

1r2` ` ` `1
25.37 C s F s F C s .Ž . Ý Ý Ý Ý1 j j 2 jž /njs1 ns1 jsn js1

Ž .Furthermore, the left-hand side of 5.37 remains valid without the condition
that s x as j ª `.j

Ž .PROOF OF THEOREM 5.2. By iv there exist constants 0 - C , C - ` such1 2
that

m jŽ .ˆ
5.38 C a F dj F C a , j G 1.Ž . H1 j 2 j

jy1 j 1 q c jŽ .< <2 - j F2
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Therefore it follows from Lemma 5.1 that

m jŽ .ˆ
15.39 U m 0 s dj - `Ž . Ž . H

n 1 q c jŽ .jgR

if and only if

1r222 n j j` `1 2 m 2Ž .ˆ
5.40 - `.Ž . Ý Ý 2jk� 01 q c 2Ž .ks2 jsk Ž .

Ž . Ž .By iii , 5.40 holds if and only if

1r2` `1 2n j j j5.41 2 g 2 m 2 - `Ž . Ž . Ž .ˆÝ Ýž /kks2 jsk

or, equivalently, if and only if

1r22H g j m j djŽ . Ž .ˆ` ž /< j < G x
5.42 dx - `.Ž . H 1r2

2 x log xŽ .

An argument similar to the one used in the proof of Theorem 1.6 shows that
Ž . Ž .5.42 implies that the integral on the right-hand side of 5.36 is finite. Thus

Ž .we get the implication to the right in 5.36 . To get the reverse implication, by
w xLemma 6.2, Chapter 4, of 7 , it is enough to show that

2 25.43 C g j m j dj F d y q h , yŽ . Ž . Ž . Ž .ˆH 1
< < < <j G1r h

Ž . Ž .for some C ) 0. Note that, by ii , g j is also radially symmetric. Therefore

d2 y q h , yŽ .1

22s sin j h g j m j djŽ . Ž .Ž . ˆH
njgR5.44Ž .

` 22 ny1< < < < < < < <s sin v h hr h u ds u g v m v v dv,Ž . Ž . Ž .Ž . Ž .Ž . ˆH Hž /0

Ž . nwhere s u is uniform measure on the unit sphere in R . It is easy to verify
that

2 < < < <5.45 sin v h hr h u ds u G C ) 0Ž . Ž .Ž .Ž .H
< <for v h G 1. Thus

` 22 ny15.46 d y q h , y G C g v m v v dv,Ž . Ž . Ž . Ž .ˆH1
< <1r h

Ž .which gives us 5.43 . I
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The next result gives an upper bound for the supremum of the 1-potential
of a Levy process under much weaker conditions than those required in´

Ž .Theorem 5.2. The term on the right-hand side of 5.48 is an upper bound for
Ž .the metric entropy integral in 5.36 and is equivalent to it when the Fourier

coefficients of the measure and the characteristic exponent of the Levy´
process are sufficiently smooth.

LEMMA 5.2. Suppose that

1 g jŽ .
n5.47 F C ; j g R .Ž . n2 < <j1 q c jŽ .Ž .

Then

1r22H g j m j djŽ . Ž .ˆ` ž /< j < G x15.48 sup U m x F C dx ,Ž . Ž . H 1r2
n 1 x log 2 xŽ .xgR

Ž . Ž .where g j is given in 1.24 .

PROOF. This is a simple application of Lemma 5.1 and the Schwarz
inequality. Without loss of generality, we assume that

m jŽ .ˆ
5.49 dj ) 0Ž . H 1 q c jŽ .< <j )1

Ž .and obtain 5.48 from the following sequence of inequalities:

`m j m jŽ . Ž .ˆ ˆ
dj F C djÝH H

n jy1 j1 q c j 1 q c jŽ . Ž .< <jgR 2 - j F2js1

1r22` `1 m jŽ .ˆ
F C djÝ Ý H

jy1 jž /k 1 q c jž /Ž .< <2 - j F2ks1 jsk

1r22` `1 m jŽ .ˆ
jnF C 2 djÝ Ý H 2jy1 jžkž /< <2 - j F2 1 q c jŽ .Ž .ks1 jsk

5.50Ž .

1r22` `1 g j m jŽ . Ž .ˆ
jnF C 2 djÝ Ý H n

jy1 j < <ž /k j< <� 2 - j F2ks1 jsk

1r2
` `1 2F C g j m j dj .Ž . Ž .ˆÝ Ý Hž /jy1 jž k < <2 - j F2ks1 jsk

I
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Ž .The next lemma gives conditions under which 5.47 holds.

Ž . Ž < <. Ž .LEMMA 5.3. If c j s c j is regularly varying at `, then 5.47 holds.

PROOF. By the assumption of regular variation,

dh
g j GŽ . H < < < <1 q c j y h 1 q c hŽ . Ž .Ž . Ž .< <hG2 j

< <ny1 < <h d h
G CH 2

< < < <hG2 j 1 q c hŽ .Ž .
5.51Ž .

< <nj
G C ,2< <1 q c jŽ .Ž .

Ž .which is 5.47 . I

6. Levy processes in T n. We begin by showing how to obtain a large´
and interesting class of Levy processes taking values in an n-dimensional´
torus. Let X be a symmetric Levy process in Rn, n G 1, with transition´

Ž . Ž .probability density p x, 0 s p x and characteristic functiont def t

6.1 Ee il X t s eytc Žl. .Ž .
n n Ž . Ž .Let p : R ¬ T denote the natural projection, p x s x mod 2p , onto the

n-dimensional torus. Consider

Y s p X .Ž .t t

� n4It is easy to see that Y s Y , t g T is a Markov process with transitiont
probability density

n n6.2 q x , y s 2p p x y y q 2p j ; x , y g T ,Ž . Ž . Ž . Ž .Ýt t
njgZ

Ž .n nwith respect to the normalized Lebesgue measure dxr 2p on T . Since X
Ž . Ž . Ž .is a Levy process, q x, y s q x y y, 0 s q x y y , where x y y is sub-´ t t def t

traction in T n. We have

1
i j xq j s e q x dxŽ . Ž .ˆ Hnt t

n2pŽ . T

s e i j x p x q 2p k dxŽ .ÝH t
n nT kgZ6.3Ž .

s e i j x p x dxŽ .H t
nR

s p j s eytc Ž j. .Ž .t̂

Therefore, in particular, Y is determined by its characteristic sequence as in
Ž .1.18 .
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Levy processes on the torus are recurrent. Therefore we consider the´
1-potential density of Y denoted by

`
1 ytv x s e q x dtŽ . Ž .H t

0
n 1s 2p u x q 2p jŽ . Ž .Ý

njgZ

6.4Ž .

from which it follows that
1

1 16.5 v j s u j s .Ž . Ž . Ž .ˆ ˆ
1 q c jŽ .

The following useful inequalities relating the 1-potential of Levy processes´
in T n with the associated Gaussian chaos is an immediate consequence of
Theorem 5.1.

� q4 nTHEOREM 6.1. Let X s X , t g R be a symmetric Levy process in T .´t
Let m g GG 2 be a finite measure on T n. Then1

16.6 sup U m x F sup H mŽ . Ž . Ž .1 2
n nxgT xgT 2

and, for any d ) 0,

1 16.7 sup U m x y U m y F sup H m y H m .Ž . Ž . Ž . Ž . Ž .1 x 1 y
< < < <xyy Fd xyy Fd

n n 2x , ygT x , ygT
1 Ž .In particular, if H is continuous almost surely, then U m x is continuous1

on T n.

Note that we can always assume that we are working with a measurable
Ž . Ž .and separable version of H . Inequalities such as 6.6 and 6.7 should be1

understood to be applying to such versions.

PROOF. Following the proof of Theorem 5.1 but with Rn replaced by T n,
Ž .we see that f can be taken to be identically 1 in 1.6 and hence h s 1. This

Ž . Ž .theorem now follows immediately from 5.13 and 5.16 since we can take B2
n wor B equal to T . Doing this carefully, one sees that the constant can be3
Ž . Ž . xtaken to be 1 in 6.6 and 6.7 . I

We now obtain concrete sufficient conditions for the continuity of continu-
ous additive functionals of Levy processes in T n, which are analogous to´
those obtained in Theorem 1.6 for Levy processes in Rn. Let m be a finite´

n � Ž . n4measure on T with Fourier coefficients m k , k g Z ; that is,ˆ

m j s e i j x dm x , j g Zn .Ž . Ž .ˆ H
nT

Assume that
1

6.8 b j s - `.Ž . Ž . Ý 1 q c k y j 1 q c kŽ . Ž .Ž . Ž .nkgZ
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Ž . Ž 1Ž ..2Note that b j are the Fourier coefficients of u x so that

22 16.9 b j m j s u x , y dm x dm y .Ž . Ž . Ž . Ž . Ž . Ž .ˆ Ž .Ý HH
njgZ

� q4 nTHEOREM 6.2. Let Y s Y , t g R be a symmetric Levy process in T´t
with characteristic exponent c . Let m be a finite measure on T n. If

1r22
` Ý b j m jŽ . Ž .ˆž /< j < G n

6.10 - `,Ž . Ý nns1

Ž . � ma Ž . n q4then m g Rev X and L , a, t g T = R has a continuous version. Int
particular, for Brownian motion on T 2, this is the case when

1
< <6.11 m k s O as k ª `Ž . Ž .ˆ 2q«ž /< <log kŽ .

for any « ) 0.

Ž .PROOF. Writing 1.12 in terms of its Fourier series, we have
1r22

d m , m s E H m y H mŽ . Ž . Ž .Ž .ž /a b a b

1r2
j a y bŽ .2 2's 2 2 b j m j sin ,Ž . Ž .ˆÝž /2njgZ

6.12Ž .

Ž . Ž . i ja � n4since m j s m j e . Let MM s m , a g T . It follows from Lemma 3.6,ˆ ˆa a
w x w x Ž . Ž .Chapter 2, of 10 and Lemma 1.1, Chapter 7, of 10 that 6.10 implies 1.14 .

� Ž . n4Therefore we see by Theorem 1.2 that H m , a g T has a continuousa
version almost surely. I

The next lemma describes the Gaussian chaos associated with a continu-
ous additive functional of a Levy process on T n by the isomorphism theorem.´
This is interesting in its own right and also leads, in Theorem 1.4, to
remarkable necessary conditions for the continuity and boundedness of cer-
tain second-order Gaussian chaoses.

� q4LEMMA 6.1. Let Y s Y , t g R be a symmetric Levy process with char-´t
2 Ž .acteristic exponent c . For all m g GG , the Gaussian chaos H m associated1 1

with L m, the continuous additive functional of Y determined by m, is given byt

1 1
H m sŽ . Ý1 2 n ' '1 q c j 1 q c kŽ . Ž .j, kgZ

= a j q k q a j y k g g y dŽ . Ž .Ž .� Ž .j k j , k6.13Ž .
y2 b j q k y b j y k g gXŽ . Ž .Ž . j k

q a j y k y a j q k gX gX y d ,Ž . Ž .Ž . 4Ž .j k j , k
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� 4 � X 4 nwhere g and g , j g Z , are independent normal random variables withj j
� Ž .4 � Ž .4mean 0 and variance 1, a j and b j denote the real and imaginary parts

Ž .of m j and d s 1 if j s k and is equal to 0 otherwise. Furthermore, forˆ j, k
n g GG 2,1

21E H m H n s 2 v x y y dm x dn yŽ . Ž . Ž . Ž . Ž .Ž . Ž .HH1 1

$ 2
1s 2 v j m j n yj ,Ž . Ž . Ž .ˆ ˆŽ .Ý

njgZ

6.14Ž .

where
$ 2 1

16.15 v j s .Ž . Ž .Ž . Ý 1 q c k y j 1 q c kŽ . Ž .Ž . Ž .nkgZ

PROOF. If m, n are measures in GG 2,1

1
16.16 v x y y dm x dn y s m j n yj .Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆÝHH 1 q c jŽ .njgZ

Therefore the Gaussian process that is used to construct the Gaussian chaos
Ž .associated with Y see Section 2 can be represented by

1
XG s Re m j g q igŽ .� 4ˆ Ž .Ým j j

n '1 q c jŽ .jgZ

1
Xs a j g y b j g .Ž . Ž .Ž .Ý j j

n '1 q c jŽ .jgZ

6.17Ž .

Ž . Ž . Ž .Letting c j and d j denote the real and imaginary parts of n j , we haveˆ
1

E G G s a j c j q b j d jŽ . Ž . Ž . Ž .Ž .Ž . Ým n 1 q c jŽ .njgZ

1
s m j n yj ,Ž . Ž .ˆ ˆÝ 1 q c jŽ .njgZ

6.18Ž .

Ž . Ž . Ž .where we use the facts that c j is real and even, a j and c j are even and
Ž . Ž .b j and d j are odd, for all j.

Ž . Ž .n w Ž .xIn particular, if m s q y y x dyr 2p see 6.2x, d d

6.19 m s e i j xeydc Ž j. s cos jx eydc Ž j. q i sin jx eydc Ž j. .Ž . Ž . Ž .ˆ x , d

Therefore

G s Gx , d def m x , d

1
Xydc Ž j.s e cos jx g y sin jx gŽ . Ž .Ž .Ý j j

n '1 q c jŽ .jgZ

6.20Ž .
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and

1 eyd Žc Ž j.qc Žk ..
2 2G y E G sŽ . Ýx , d x , d 2 n ' '1 q c j 1 q c kŽ . Ž .j, kgZ

= cos j q k x q cos j y k x g g y dŽ . Ž .Ž . Ž .� Ž .j k j , k

y2 sin j q k x y sin j y k x g gXŽ . Ž .Ž . Ž .Ž . j k

q cos j y k x y cos j q k x gX gX y d .Ž . Ž .Ž . Ž .Ž . 4Ž .j k j , k

Integrating with respect to m, we get

1 eyd Žc Ž j.qc Žk ..

H m , d sŽ . Ý1 2 n ' '1 q c j 1 q c kŽ . Ž .j, kgZ

= a j q k q a j y k g g y dŽ . Ž .Ž .� Ž .j k j , k6.21Ž .
y2 b j q k y b j y k g gXŽ . Ž .Ž . j k

q a j y k y a j q k gX gX y d .Ž . Ž .Ž . 4Ž .j k j , k

Ž . Ž .Taking the limit in 6.21 , as d ª 0, we get 6.13 .
Ž . Ž .The first line in 6.14 follows from the construction of H m . It is given in1

Ž .2.9 and, of course, the same analysis holds for the 1-potential as for the
Ž . Ž .0-potential. Taking its Fourier transform gives the rest of 6.14 and 6.15 .

w Ž .We will verify the transition between the first and second lines of 6.14 by a
xcomputation in the proof of Lemma 6.2. I

The next lemma enables us to study questions of continuity and bounded-
ness of Gaussian chaoses associated with continuous additive functionals of
Levy processes on T n in terms of simpler Gaussian chaoses.´

2 Ž .LEMMA 6.2. Let MM ; GG and assume that m 0 s C for all m g MM. Letˆ1
� Ž . 4 Ž .H s H m , m g MM be as given in 6.13 . Then H has a continuous version1 1 1

� Ž . 4 � XŽ . 4if and only if x m , m g MM or x m , m g MM has a continuous version,
where

g g m j y kŽ .ˆj k
6.22 x m sŽ . Ž . Ý ' '1 q c j 1 q c kŽ . Ž .j/k

nj, kgZ

and

g gX m j y kŽ .ˆj kX6.23 x m s .Ž . Ž . Ý
n ' '1 q c j 1 q c kŽ . Ž .j, kgZ
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Furthermore,

g g y d m j y kŽ .ˆŽ .j k j , k
6.24 sup H m F C supŽ . Ž . Ý1 1

n ' '1 q c j 1 q c kŽ . Ž .mgMM mgMM j, kgZ2 2

and

sup H m y H nŽ . Ž .1 1
m , ngMM 2

g g y d m j y k y n j y kŽ . Ž .Ž .ˆ ˆŽ .j k j , kF C sup ,Ý2
n ' '1 q c j 1 q c kŽ . Ž .m , ngMM j, kgZ 2

6.25Ž .

where C and C are constants independent of c and m.1 2

PROOF. Define

1˜6.26 G s m j g ,Ž . Ž .ˆ ˜Ým j
n '1 q c jŽ .jgZ

where g s g q igX . Note that˜j j j

˜ ˜ X6.27 G s G s G q iG ,Ž . m def x , d x , d x , dx , d

X Ž .where G is an independent copy of G given in 6.20 . Using the fact thatx, d x, d

Ž . Ž X . �c ? is symmetric, one can check that E G G s 0, that is, that G ,x, d y, d x, d
n4 � X n4x g T and G , x g T are independent, identically distributed Gaussianx, d

processes. Therefore

˜ ˜ 2 ˜ 2< < < <H m s lim G y E G dm xŽ . Ž .H ž /1 def x , d x , d
dª06.28Ž .

s H m q H X m ,Ž . Ž .1

Ž . XŽ . Ž . Ž .where H m and H m are independent copies of H m given in 6.13 . We1 1
now see that

˜ ˜6.29 EH m H n s 2 EH m H n .Ž . Ž . Ž . Ž . Ž .1 1 1 1

Ž . Ž .Furthermore, by 6.19 and 6.26 , we have that

˜ ˜G s Gx , d def m x , d

1
ydc Ž j. i j xs e e g̃Ý j

n '1 q c jŽ .jgZ

6.30Ž .

Ž .and so, by 6.28 ,

m j y kŽ .ˆ˜6.31 H m s g g y 2d .Ž . Ž . ˜ ˜Ý ž /1 j k j , k
n ' '1 q c j 1 q c kŽ . Ž .j, kgZ
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Ž .2 < <2 < <4Using the facts that E g s 0, E g s 2 and E g s 8, we see that˜ ˜ ˜j j j

m j y k n k y jŽ . Ž .ˆ ˆ˜ ˜6.32 EH m H n s 4 .Ž . Ž . Ž . Ý1 1 1 q c j 1 q c kŽ . Ž .Ž . Ž .nj, kgZ

Ž . Ž . Ž .Note that 6.29 and 6.32 together give an independent verification of 6.14
Ž .and 6.15 .

Ž .We can rewrite 6.31 as

m j y kŽ .ˆ
H̃ m s g gŽ . ˜ ˜Ý1 j k' '1 q c j 1 q c kŽ . Ž .j/k

C 2< <q g y 2 .˜Ž .Ý k1 q c kŽ .nkgZ

6.33Ž .

2 Ž . Ž .Note that the condition that m g GG implies, by 6.14 and 6.15 , that1
Ž Ž ..y2 Ž .nÝ 1 q c k - `. Thus we see that the last term in 6.33 is a fixedk g Z

random variable and hence it plays no role in the question of the continuity of
Ž . Ž . Ž .H m on MM. Letting a j and b j denote the real and imaginary parts of1

Ž . Ž .m j , as above, the first term to the right of the equal sign in 6.33 can beˆ
written as

a j y k g g q gX gX q b j y k g gX y gX gŽ . Ž . Ž . Ž .j k j k j k j k˜6.34 H m s .Ž . Ž . Ý0 ' '1 q c j 1 q c kŽ . Ž .j/k

˜Ž . Ž .It is clear by 6.28 and the above remark on the diagonal terms of H m1
˜Ž . Ž .that the continuity of H m and H m are equivalent. Consider1 0

a j y k g gŽ . j k
6.35 x m sŽ . Ž . Ý1 ' '1 q c j 1 q c kŽ . Ž .j/k

and

b j y k g gXŽ . j k
6.36 x m sŽ . Ž . Ý2 ' '1 q c j 1 q c kŽ . Ž .j/k

2 � Ž . 24 � Ž . 24for m g GG . It is obvious that if x m , m g GG and x m , m g GG are1 1 1 2 1
˜ Ž . Ž .continuous, then so is H m and hence H m . It is also easy to see, taking0 1

into account the equivalence of continuity for the coupled and decoupled
Ž . Ž . Ž .Gaussian chaoses, that x m and x m are continuous if and only if x m is1 2

Ž .continuous. Thus we see that the continuity of x m implies the continuity of
Ž . Ž . XŽ .H m . The equivalence of the continuity of x m and x m follows from the1

Ž .decoupling property and the above remark on the diagonal of H m . One can1
˜ Ž . Ž .also show that the continuity of H m implies the continuity of x m and0 1

Ž . Ž . XŽ .x m and hence of x m and x m .2
Ž . Ž . Ž . Ž .Inequalities 6.24 and 6.25 follow from 6.28 and 6.31 and simple

comparison theorems between the norms of coupled and decoupled Gaussian
Ž w x .chaoses. See, e.g., Section 2 of 1 . This completes the proof of Lemma 6.2. I
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PROOF OF THEOREM 1.4. The proof follows immediately from the inequali-
ties in Theorem 6.1 and Lemma 6.2, replacing the 1-potential by its Fourier
series. We use the fact that all the moments of a norm of a Gaussian chaos

Ž .are equivalent to express 1.19 in terms of the first moment of the norm. I

Ž X.PROOF OF THEOREM 1.5. The expression in i is, except for a constant
1 Ž . Ž . nmultiple, the Fourier series of U m x at x s 0. Since m k ) 0 for all k g Z ,ˆ

1 Ž . Ž . Ž X.the Fourier series of U m x converges uniformly. Thus i and i are
Ž . Ž . Ž . Ž .equivalent. That iii implies i follows from Theorem 1.4 and ii implies iii

w x Ž . Ž .follows from Theorem 1.2 of 15 . That i implies ii is a simple manipulation
Ž . nof the metric entropy integral J d, MM . It is done for processes in R and

measures on Rn, n s 2, 3, in Theorem 5.2; however, the upper bound in this
w � Ž .4theorem is also valid when n s 1. Note that the conditions on c k imply

Ž . xthat iii of Theorem 5.2 holds.
Ž . Ž .Theorem 1.3 shows that iii implies iv . We now complete the proof by

Ž . Ž . � mx Ž . n q4showing that iv implies i . Assume that L , x, t g T = R is continu-t
ous almost surely. Let

bg x s e ik xeyg < k <Ž . Ý
k

n g g g Ž .denote the Poisson kernel on T . Set m s m) b s g x dx and note thatdef
g Ž . g Ž . Ž .g x s Hb x y y m dy . A straightforward calculation shows that

6.37 L mx
g s L m y bg x y y dy,Ž . Ž .Ht t

� mx Ž . n q4since, in view of the continuity of L , x, t g T = R , the right-hand sidet
Ž . gof 6.37 is a continuous additive functional with Revuz measure m . Further-x

more, L mx
g

converges almost surely, as g x0, to L m which is finite. Hence forl l

any c ) 0 we can find a finite constant K such that

6.38 E0 L mg G K F cr2.Ž . Ž .l

Ž . Ž . 1 Ž .We show that 6.38 implies i . Assume, to the contrary, that U m 0 s `.
Then

m k eyg < k <Ž .ˆ
1 g 16.39 U m 0 s U m 0 s `.Ž . Ž . Ž .Ý 1 q c kŽ .k

By the Paley]Zygmund inequality we see that

2g0 mE LŽ .Ž .g g l20 m 0 m6.40 E L G dE L G 1 y dŽ . Ž .Ž .Ž .l l 2g0 mE LŽ .ž /l

for any 0 - d - 1. Also,

6.41 E0 L mg s U 1mg 0Ž . Ž .Ž .l
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and

2g0 m 1 1 g gE L s 2 u 0, y U m y dm yŽ . Ž . Ž .Ž .Ž . Hž /l
6.42Ž .

21 gF 2 U m 0 ,Ž .Ž .
Ž . nwhere, in the last inequality, we use the fact that m k G 0 for all k g Zˆ

1 g Ž . 1 g Ž . nwhich implies that U m 0 G U m x for all x g T .
Ž .Using these inequalities in 6.40 , we see that for 0 - g F g , for some g0 0

sufficiently small,

1g0 m 1 g6.43 E L G U m 0 G cŽ . Ž .lž /2

Ž . Ž .for the same constant c as in 6.38 . This contradiction proves that iv
Ž .implies i . I

3 Ž x3PROOF OF COROLLARY 1.1. It is convenient to take T s yp , p . Letdef
� Ž . 34 Ž . Ž < < .h j , j g T be radially symmetric such that h j s f j and let m be a

3 Ž . 1 Ž . Ž .measure on T with density h j . Clearly, U m 0 - ` if and only if uf u g
1Žw x.L 0, 1 .

Ž . Ž . Ž .We first show that iii implies ii . Let us assume that iii holds. This
implies that f is regularly varying at 0 with index greater than or equal to

� Ž . Ž . 3 q4y2 and that LL x, t , x, t g T = R is stochastically equivalent to L s
� mx Ž . 3 q4L , x, t g T = R . We show that the Gaussian chaos associated with Lt
is continuous almost surely which implies, by Theorem 1.3, that L is continu-

� Ž .4 3ous almost surely. To begin, we estimate the Fourier coefficients m nˆ ng Z
of m. We have

y3 < <m n s 2p cos j n f j djŽ . Ž . Ž . Ž .ˆ H
< <j F1

6.44Ž .
1y3 2< < < <s 2p cos v n nr n u ds u v f v dv,Ž . Ž . Ž .Ž .Ž .H Hž /0

Ž . 3where s u is a uniform measure on the unit sphere in R . Let n / 0. Since
Ž . < < < < Ž .the last integral in 6.44 is independent of nr n , we take nr n s 0, 0, 1 .

Then

p1y2 2< <m n s 2p cos v n cos f sin f df v f v dvŽ . Ž . Ž .Ž .ˆ H H
0 0

6.45Ž .
1 1

< <s sin v n vf v dv.Ž . Ž .H2 < <2p n 0

Ž .Since vf v is decreasing and f is regularly varying at 0 with index greater
than or equal to y2, we see that

< <1 f 1r nŽ .< <pr n 26.46 0 F m n F v f v d v F C .Ž . Ž . Ž . Ž .ˆ H2 32p < <n0
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If f is regularly varying at 0 with index greater than y2, it follows from
Ž .6.46 and Theorem 6.2 that L is continuous almost surely. Thus we need
only consider the case when f is regularly varying at 0 with index y2. By
Ž . w x6.46 and the fact that in Lemma 2.2 of 15 we can work with a majorant of
m, we see that the Gaussian chaosˆ

g g y d m j y k e iŽ jyk . xŽ .ˆŽ .j k j , k 36.47 , x g T ,Ž . Ý
2 2n '< < < <'1 q j 1 q kj, kgZ

is continuous almost surely. Therefore, by Lemma 6.2, the Gaussian chaos
Ž .associated with L is continuous almost surely. Thus we see that iii implies

Ž .ii .
Ž . Ž . Ž . Ž xObviously, ii implies i . Now assume that i holds. For v g 0, 1 define

1rv, 1rv ) f 1rm ,Ž .
f v sŽ .m ½ f v , 1rv F f 1rm .Ž . Ž .

3 Ž . Ž < <. Ž .Let m be the measure on T with density h j s f j . Since vf v ism m m m
Ž . Ž . Ž . 3nonincreasing on 0, ` , it follows from 6.46 that m n G 0 for all n g Z .ˆm

1 Ž . 1 Ž . 3 1 Ž .This implies that U m 0 G U m x for all x g T . Note that U m 0 ism m m
3 1 Ž . 1 Ž .finite for all m g Z and U m 0 U m 0 as m ª `. Also,m

l l
6.48 f X ds f X ds as m ª `.Ž . Ž . Ž .H Hm s s

0 0

Using these facts and the Paley]Zygmund inequality, as in the preceding
Ž . Ž .proof, we see that i implies iii . I

7. Moduli of continuity. Let X be a Markov process with 1-potential
1Ž . 2 Ž .density u x, y . Let MM ; GG l Rev X be compact with respect to the metric1

Ž . � m Ž . q 4d given in 1.12 . We consider L s L , t, m g R = MM and the associated1 t
� Ž . 4Gaussian chaos H s H m , m g MM defined just before Theorem 2.2 and1 1

w xassume that both of these processes are continuous almost surely. As in 12 ,
we can use the isomorphism theorem to carry over some results about the
moduli of continuity of H to L.1

THEOREM 7.1. Let H and L be as defined above and let t be a real-valued1
function on MM = MM. Assume that

H m y H nŽ . Ž .1 1
7.1 lim sup F C a.s.Ž .

t m , ndª0 Ž .Ž .t m , n Fd

for some constant 0 F C - `. Then

< m n <L y Lt t x7.2 lim sup F C , P a.s.Ž .
t m , ndª0 Ž .Ž .t m , n Fd

w .for almost all t g 0, z , for all x g S y Q, for some polar set Q.
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PROOF. We assume for simplicity that z s `; essentially the same proof
works for general z . Take f to be strictly positive and F s 1 c in TheoremB
2.2, where

g m y g n CŽ . Ž .
B s g g C MM lim sup F .Ž .½ 5t m , n 2dª0 Ž .Ž .t m , n Fd

Ž .Assumption 7.1 implies that
17.3 F H m s 0, P a.s.,Ž . Ž .Ž .1 G2

where P is the probability measure on the probability space of H . HenceG 1
Ž .the left-hand side of 2.29 is equal to 0. Since f is strictly positive, this

implies that
1m r7.4 F L q H m s 0, P = P = P a.s.Ž . Ž .Ž .l 1 G l2

or, equivalently, that
1 1m nL q H m y L q H nŽ . Ž .Ž .l 1 l 12 2

lim sup
t m , ndª0 Ž .Ž .t m , n Fd7.5Ž .

C
rF , P = P = P a.s.G l2

Ž .Using 7.1 again, we see that
< m n <L y Ll l r7.6 lim sup F C , P = P a.s.Ž . lt m , ndª0 Ž .Ž .t m , n Fd

Ž .Using the argument in the paragraph following 3.3 , in the proof of Theorem
1.1, we see that

< m n <L y Ll l x7.7 lim sup F C , P = P a.s.Ž . lt m , ndª0 Ž .Ž .t m , n Fd

Ž . Ž .for all x g S outside some polar set Q ; S. It is clear that 7.7 implies 7.2 .
This completes the proof of Theorem 7.1. I

Similar to Theorem 3.2, for continuous additive functionals of a Levy´
process on a group determined by a translation-invariant set of measures, we
can remove the restriction on the starting point of the process. For simplicity,

n � n4we consider Levy processes on R and measures MM s m , a g R , a set of´ a
translations of a fixed finite measure m on Rn.

THEOREM 7.2. Let X be a Levy process on Rn. Let m be a finite measure in´
2 Ž . n n �GG and let m s m A q a for all a g R and Borel sets A ; R . Let MM s m ,a a a

n4 Ž .a g R with m g Rev X and let H and L be as defined in the beginning of1
this section with respect to X and MM. Assume that, for some real-valued
function t ,

H m y H mŽ . Ž .1 a 1 b
7.8 lim sup F C a.s.Ž .

< <t a y bŽ .< <ayb ª0
nw xa , bg 0, 1
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for some constant 0 F C - `. Then
L ma y L mb

t t
7.9 lim sup F CŽ .

< <t a y bŽ .< <ayb ª0
nw xa , bg 0, 1

for almost all t g Rq almost surely.

PROOF. This follows immediately from Theorem 7.1 and the fact that
Ž .3.12 holds for these processes. I

In order to use Theorem 7.2, we need to know the moduli of continuity for
� Ž . w x n4H m , a g 0, 1 . Actually, not much is known about the moduli of1 a
continuity of second-order Gaussian chaoses. We make do here with some
simple consequences of the well-known fact that for any second-order Gauss-

˜� Ž . 4ian chaos, say H t , t g T , where T is some index set,

˜ ˜H a y H bŽ . Ž .
7.10 E exp l - C ; a, b g TŽ . ž /u a, bŽ .

for some l ) 0, where
1r2˜ ˜7.11 u a, b s E H a y H b .Ž . Ž . Ž . Ž .Ž .Ž .

˜ n� Ž . 4LEMMA 7.1. Let H a , a g R be a second-order Gaussian chaos satis-
fying

1r22˜ ˜ < <7.12 E H a y H b F r a y b ,Ž . Ž . Ž . Ž .Ž .ž /
where r is a regularly varying function, at 0, with index greater than 0. Then
there exists a constant 0 F C - ` such that

˜ ˜H a y H bŽ . Ž .
7.13 lim sup F C a.s.Ž .

< < < < < <r a y b log a y bŽ .< <ayb ª0
nw xa , bg 0, 1

PROOF. There are many well-known techniques for obtaining a result
such as this one. We will use a lemma of Garcia, Rodemich and Rumsey.
Since r is regularly varying with index greater than 0, without loss of

Ž < < . < <generality we can assume that r u x0 and u x0 and that it is continuous
in some neighborhood of 0. It is well known that

˜ ˜H a y H bŽ . Ž .
n7.14 E exp - C ; a, b g RŽ .

< <ž /4r a y bŽ .
Ž w x .for some constant C - `. See, e.g., Corollary 3.9 of 9 . Furthermore, since r

Ž .is regularly varying with index greater than 0, it is easy to see that 1.14
˜ n� Ž . 4 Ž . Ž < < .holds. Thus H a , a g R has a continuous version. Let z x s exp x r4 .
Ž .It is clear from 7.14 that

˜ ˜H a y H bŽ . Ž .
7.15 z da db - C - `Ž . H H

n n < <ž /4r a y bŽ .w x w x0, 1 0, 1



PATH PROPERTIES OF ADDITIVE FUNCTIONALS 1175

Ž .on a set of measure 1. The statement in 7.13 now follows from Lemma 4.1,
w x Ž w x .Chapter 4, of 7 . See also Lemma 3.3.13 of 18 . I

PROOF OF THEOREM 1.7. By the hypotheses on the dimension of A, there
exists a finite measure m supported on A such that

dm x dm yŽ . Ž .
7.16 - ` ; a - b .Ž . HH a< <x y y

This implies that
2

m jŽ .ˆ
7.17 dj - `.Ž . H 2ya< <j

� Ž . w x n4Let a - b. Consider the Gaussian chaos H m , a g 0, 1 associated with1 a
Ž .B. Taking the Fourier transform in 1.12 , we get

1r222 < <sin j a log 1 q j m jŽ .Ž .Ž . ˆ
d m , m F C djŽ . H1 a 2ž /< <1 q j

1r222 < <sin j a log 1 q j m jŽ .Ž .Ž . ˆ
F C sup djHa Ž .2ya r22< <j2� 0< <jgR 1 q jŽ .

7.18Ž .

1r2a< < < <F C a log 1 q 1r aŽ .Ž .
< <br2y«F a
< < Ž .for all « ) 0, for a F a , for some a sufficiently small. Since d m , m s0 0 1 ayb

Ž . Ž .d m , m , we can use 7.18 in Lemma 7.1 to get1 a b

H m y H mŽ . Ž .1 a 1 b
7.19 lim sup s 0 a.s.Ž . Ž b r2.y«< <a y b< <ayb ª0

2w xa , bg 0, 1

Ž .Therefore 1.31 will follow from Theorem 7.2 once we show that H and L1
Ž .are continuous. Obviously, 7.19 implies that H is continuous. Theorem 1.31

now completes the proof of Theorem 1.7. I

PROOF OF THEOREM 1.8. As in the above proof, everything follows from an
Ž .upper bound for d m , m . In this case, for p s 2, we have1 a

1r22
2 ˆ< < < <sin j a log 1 q j f jŽ .Ž .

d m , m F C djŽ . H1 a 2< <ž /1 q j

1r22< < < <sin j a log 1 q jŽ . ˆ5 5F C sup f 22ž /< <1 q j< <j

7.20Ž .

1r2 ˆ< < < < 5 5F C a log 1 q 1r a fŽ .Ž . 2
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and, for 1 - p - 2, we have
Ž .1r 2 rr2 r< < < <sin j a log 1 q jŽ .Ž . ˆ5 57.21 d m , m F C dj f ,Ž . Ž . H qr1 a 2ž /< <1 q jŽ .

ˆ5 5where 1rp q 1rq s 1 and 1rr q 2rq s 1. By Young’s inequality f Fq
5 5C f . Also, by a simple estimate,p

r2 r< < < <sin j a log 1 q jŽ .Ž .
djH r2< <1 q jŽ .

7.22Ž . r
< <log 1 q jŽ .Ž .r2 r< < < <F a log 1 q j dj q dj .Ž .Ž .H H 2 r< << < < < < < < < jj F1r a j G1r a

Thus
1r21y1r r< < < < 5 57.23 d m , m F C a log 1 q 1r a f .Ž . Ž . Ž .Ž . p1 a

Using this in Lemma 7.1, we get

H m y H mŽ . Ž .a b
5 57.24 lim sup F C f a.s.Ž . p2yŽ2r p. 3r2< < < < < <a y b log a y b< <ayb ª0

2w xa , bg 0, 1

Ž .Therefore, as in the proof of Theorem 1.7, 1.32 follows from Theorem 7.2.
This completes the proof of Theorem 1.8. I
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