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I. Introduction 

Logarithmic averages have received a great deal o f  attention in probability the- 

ory since the recent discovery that logarithmic averaging enables one to go from 

weak convergence in the classical central limit theorem to an almost sure limit the- 

orern. More precisely, if  Yi denotes a sequence of  i.i.d, random variables with mean 
zero and variance 0-2, and Sk = ~'j=~ Yj is the sum of  the first k terms, then wc 

have 

1 L 1 {s~ ~<x~,/~} _ ¢b(x) a.s., 

where ¢b(x) is the standard normal distribution function (see Brosamler, 1988; Schatte, 

1988; Fisher, to appear; Lacey and Philipp, 1990; Berkes and Dehling, 1993). 

The effect o f  logarithmic averaging on local time asymptotics has been studied by 

Csaki, Foldes and Revesz (to appear) for certain random walks. If  X,, is a random 

walk: in ,~d we  let L, = L °, where L~I = {number of  j I X  i = x, l<~.j<~n}. They show 
that 

1 L L , ~  2 V ~  
lim @ k=l n--, vo k 3,/2 o" 

a.s., (1.1) 

for one-dimensional random walks with mean zero and incremental variance 0 -2 , 
and 

1 L Lk 1 
, l i ra  log logn k=2 k log  2k - 7z 

a.s., (1.2) 
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for the simple random walk in the plane. Furthermore, they establish a second-order 

limit law for the simple random walk on the line 

1 ~ Llkk s/4- L ° w 2 9/4 
,-~lim ~ k=l -- ~ N ( O ,  1), (1.3) 

where w denotes weak convergence and N(0, 1 ) is a standard normal random variable. 

In this paper we shall show how results such as (1.1), (1.2) and (1.3) for a very 

wide class o f  random walks and Levy processes follow from the laws of  the iterated 

logarithm for local times which we obtained in Marcus and Rosen (to appear). 

Let X, be a recurrent random walk in Z d in the domain o f  attraction of  a non- 

degenerate strictly stable random variable U of  index ft. Thus 

x, 
- -  ---~ U 
b(n) 

in law where b(n) is regularly varying of  order 1~ft. For X, to be recurrent, we must 

have either d = 1, l~<fl~<2 or d = 2, fl = 2. We assume for simplicity that X, 
is strongly aperiodic. We can always take b(x) to be a continuous and monotone 

increasing function from ~+ to ~ with b(0) = 0. With the notation pn(x) = P(X, = 
x) we then have that 

1 
p,(O) ~ bd(n ) (1.4) 

is regularly varying of  order -d/fl ,  and 

, fn b-~l g(n) = Z pj(O) ~ dt (1.5) 
j--I 

is regularly varying o f  order 1 - d / f t .  We use the notation r(n) ~ s(n) to mean 
lim,~o~ r(n)/s(n) = 1. The recurrence o f  X, is equivalent to the fact that l i m , ~  
g(n) = oo. 

We have shown in Marcus and Rosen (to appear) that the following law of  the 
iterated logarithm holds for Ln: 

L ,  
lira sup = a0 a.s. (1.6) 

n - ~  g ( n / l o g l o g g ( n ) ) l o g l o g g ( n )  

where a0 is a computable constant. We wil l  see that by taking logarithmic averages 
we can go from the l imsup in (1.6) to a true limit theorem, generalizing (1.1) and 
(1.2). 

Theorem 1. With the above hypotheses on X, we have 

N 
1 ~ p,(O) L = lira a.s. N - ~  logg (N)  = ~ " 1 (1.7) 

Here is our generalization o f  the second order theorem for local time differences 

(1.3). 
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Theorem 2. With the above hypotheses on X~ and assuming in addition that X,, is 
symmetric we have 

N 

lim 1 n ~  I pn(O) (L o __ L~) w 4a(x)N(O, 1 ) (1.g) 
N ~  v/logg(N) = g 3 / 2 ( n )  

where ~ denotes' the weak limit, N(O, 1 ) denotes a standard normal random variable, 
and 

OG 

a2(x) ~ pn(O) -- pn(X). (1.9) 

Besides logarithmic averages we can consider '/'-averages', in which the log,q(N) 
of Theorem 1 is replaced by f (g (N) ) ,  and 1/g2(n) is replaced by - f"( ,q(n)) .  More 
precisely, let f ( x )  be an ultimately C 2, monotonically increasing, concave function 
of slow variation, such that f ( x )  T vc, and f ' ( x )  = O(1/x). For example, we can 
take f (x )  log logx, or more generally f ( x )  logpx, the pth iterated logarithm 
ofx.  

Theorem 3. With the above hypotheses on Xn and f (x ) ,  (f 

1 
f '(X)-o(f(x) x l o g l o g x )  (t.10) 

then 

N 

lim 1 Z ( -  f")(g(n))p,(O)Ln 1 
N ~  f ( q ( N ) )  ,,=l 

a.s. (1.11) 

Furthermore, if  X,, is symmetric and 

v 
then 

(1.12) 

N 
lim 1 . ¥ ~  ~ ( -~ f ' ) ' (g (n ) )pn(O) (L  ° L;~I) ~'=' 2a(x)N(O, 1). (1.13) 

n=l  

For example, taking f ( x ) =  loglogx we obtain the following 

Theorem 4. With the above hypothes'es" on Xn we have 

X 

1 ~ pn(O) L,, lim = 1 a.s. 
,,v~,~ loglogg(N) = g 2 ( ~ l ~ T g ~ ] ( n  ) 

F'urthermore, !fl X,,, is symmetric we have 

N 
lim 1 ~ p, , (0)  _(L0 

g3"Z-n~-v--#?( ) o g g ( n )  -- L'I) w 4a(x)X(0, IX/~ log g(X) 

(1.14) 

1). ( l . 1 5 )  
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We next consider local time asymptotics for Levy processes. Logarithmic averaging 
for the local times of  Brownian motion was first considered by Brosamler (1973), and 
later by Csaki and Foldes (to appear). Let Xt be a recurrent Levy process in ~1 and 

set 

E(exp(iLYt)) = exp(-t~p(2)).  

Xt has a local time if and only if (1 + i f ( 2 ) )  -1 C LI (~+) .  We shall assume that in fact 

f0 ~ log(1 + 2) d2 < OO. 
1 ÷ tp(2) 

We denote the local time of  X by L~, which we normalize by setting 

( /5) /0  E x e - tdLy  = e - t p t ( x -  y )d t  

where p t ( x -  y)  = pt(x, y)  is the transition density function for X.  We shall assume 

that pt(O) is regularly varying at infinity of  order -1 / f l  for some 1 ~<fl~<2. Set 

Jo .t g(t) = p,(O) ds. 

I f  fl = 1, so that g(t) is slowly varying at infinity, we shall also require that at least 
one of  the following three mild regularity conditions holds: 

lim g( t/ log log g( t ) ) = 1, (1.16) 
t - ~  g(t) 

g(t/log g(t)) 
lim sup < 1, (1.17) 

t ~  g(t) 

1 f '  g(s) .  _.~ g(t) 
g(t) ~, s as~t~tg~- ~ for all t sufficiently large. (1.18) 

We can now state our generalization of  Theorem 1 for Levy processes. 

Theorem 5. With the above hypotheses on Xt we have 

lim I f' ps(O)L o t ~  logg( t )  g2(s) ds = 1 a.s. (1.19) 

Here is our generalization of  Theorem 2. 

Theorem 6. With the above hypotheses on Xt and assuming in addition that Xt is 
symmetric we have 

lim 1 j2 t ps(O) ,LO L~)ds w 4a(x)N(O, 1) (1.20) 

where w denotes the weak limit, N(O, 1 ) denotes a standard normal random variable, 
and 

jo a2(x) = ( p s (O) -  p,(x))ds.  (1 .2 l )  
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2. Proofs  

179 

Proof  of Theorem 1. This will follow almost immediately from our law of the iterated 
logarithm (1.6) which implies that 

LN 
-~ 0 a.s (2.1) g(N) log(g(N)) 

and Theorem 6 of Chung and Erd6s (1951): 

lira 1 '+  60(Xj) 
N . . . .  logg(N) ~=  g(j~ - 1 a.s. (2.2) 

Although their theorem was formulated for integer valued random walks, the proof of 
(2.21) is valid for random walks in 2 a for any d. 

We first note that from (1.4) and (1.5) 

N pn(O) ( 1 1 ) 

. o2( , , )  g ( ) )  g (g / )  • n = ]  

(2.3) 

We now rewrite 

N N 

Z p,(0)L,, ~ p,,(O) 6o(Xj) 
,,=l g2(n) = g2(n) j=l 

N N 

:  o(Xj)  C p.(0) 
• g2(n) 

j =  I n ./ 

N 

j=~ o0) ,q (N)  

N~ 60(Xj) L~,,. 
Z_., . /=l g(j) g(N)' 

(2.4) 

and Theorem 1 follows using (2.2) and (2.1). 

P r o o f  of Theorem 2. We first recall the second-order law of the iterated logarithm for 
local times of Marcus and Rosen (to appear): 

lim sup L ° - L~ = ala2(x) a.s. (2.5) 
. . . .  g l " 2 ( n / l o g  log g(n)) log log g(n) 

where al is a computable constant. 
Using this and resumming as in (2.4) we see that it suffices to prove that 

1 ~ 6o(Xj) - 6x(xj) Z 2a(x)N(O, l) (2.6) 
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and to this end it suffices to show that for all k E Z+ we have 

( {  1 L 6° (XJ ) -~x (Xj )  ---~ ~ ( 2 a ( x ) )  2k 
E ~ j=l gl /Z(j)  

and 

j E ~ j=l 

as n ~ ~ ,  see e.g. Durret (1991, Chapter 2, Section 3). 

We have the basic identity from Rosen (1993): 

(2.7) 

(2.8) 

/ 
= (2k)! Z 

1 <~jl <~j2...<~jzl¢ ~ n  

u ~ k l  ( - - 1 ) t ' p j r  j r _ l ( X ) )  (P i t - j r ,  (0) - -  

gl/2(j l  )gl/2(j 2 ) ' ' '  gl/2(j2k ) 

(2.9) 

with the convention po(x)  = 1 (x:0}- We will see below that asymptotically, for each r 
r X odd, we can replace the factor ( p j , _ j r _ , ( O ) - - ( - - 1 )  Pi t - - j r - - , ( ) )  by 2pjr--jr_](O). Hence 

to prove (2.7) it suffices to show that 

V "~ U ~ = I  Pj2r--I j 2 r - -2 (O) (P j2r - - j 2 r - - I (O)  - -  P j 2 r - - j 2 r - - l ( X ) )  
Z_., gl /2(j l  )gl /2(jz  ) . . . gl/2(j2k ) 

I <~j~ <~j2...<~j2k <~n 

(a2(x) l°g g(n))k (2.10) 
k~ 

We will establish (2.10) by evaluating in turn the sum over is, s = 1 . . . . .  2k. The 

result will depend on whether s is odd or even. We will show inductively that for the 

sum over is, s = 1 . . . . .  2 i -  1 for any 1 <~i<~k we have that 

Z 
l <~jl ~ j2 . . .~ j2 i - I  ~ n  

i 
U/ ' : I  PJ2r- --j2r 2 (O) (P j2r - - j2 r  - ( 0 )  - -  Pj2r--j2r I(X)) 

gU2(jl)gl/2(j2)''" g l / 2 ( j 2 i  1 ) 

2i • i-- 1 a ( x ) { logg(J2 i ) }  pj2i(O) 
(i - 1)!gU2(j2i) 

and for the sum over js, s = 1 . . . . .  2i for any 1 <~i<~k - 1 we have that 

(2.11) 

Z 
Hi+I 0 i r=~ pj2r ,--j2r 2( )I~r=~(Pj2r--j2,--,(0)- Pj2r--J .... (X)) 

1 <~jl <~j2... <~.J2i <~n 
g l /2 ( j l ) g l / 2 ( j  2 ) ' ' "  g l / 2 ( j 2 i  ) 

a2i(x){log g(j2i+l i )} pJ2+ (o) 
(2.12) 
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At the final stage we use 

{ l o g ( o ( j 2 k ) ) } k  1 pj2k ( 0 )  

j2k= I g( j2k )  ~ '  {log(g(n))} k, ( 2 . 1 3 )  

which follows from (1.4) and (l .5) and we will arrive at (2.10). 
It is easy to prove (2.11) and (2.12) inductively using the following two asymptotic 

relations which, as we will show, hold for all 1 ~<r~<k: 

J'2r {logg(J2r-I)}" r 1 
Pj2r- I (O)(p j> j2r , ( 0 ) - -  /O]2_j2 ( X ) )  5 T M  

gl /2( j2r-1  ) 
/2~ I ==1 

a2(x ) {log g(j2r)}r-l pj2,(O ) (2.14) 
gl/2( j2r  ) 

and 

12,. + I • r -- 1 Z {log(g(J2r))} pj2r(O)pj2,+,-j2,.(O) 
g(J>) j2, = I 

1 
~-{logg(jz~+l)}~ph, (0). (2.15) 

r 

To prove (2.14) we first note that 

L {l°gg(J)}r lpj(O)(pn /(0)-- Pn j(x)) ~ a2(x) {l°gg(n)}r 'pn(O) 
./=n(1 -l:) g l / Z ( j )  . gl."2(rl) 

(2.16) 

using 

L (pn-j(O) - pn-j(x))  ~ aX(x), 
j n(1 --~;) 

and the regular variation of 

{log g ( j ) y - 1  pj(O)/gU2(j). (2.17) 

We will show that 

n(l c)-i {logg(j)}r_lpj(O) . . . .  ( {1ogg(n) f f - - !p , (0 ) )  

tp.-jtu -- p._j(x)) = o k g,,'2(n) 
/ =  1 

(2.18) 

for any x, and this together with (2.16) proves our claim (2.14). To see (2.18), note 
first that 

n(l - e )  1 

Z {l°gg(J)}r-lpj(O)(pn__j(O)- p,_i(x)) 
g l / 2 ( j )  

j=l 

( n ( l ~ - I  { l o g g ( J ' ) } r - l p j ( O ) ~  Y t J )  
--1,'2,-', , sup (pk(0) -- pk(x)) (2.19) 

/ ng<~k 
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so that to prove (2.18) it suffices to show that 

sup (pk(0) - pk(x)) = o(A(n)) (2.20) 
ne,<~k<~n 

where 

( {logg(n)}r__lpn(O) ~ / (n(l~.~-I {logg(j)}r_lpj(O)). 
A(n) \ g'/2(n) J / \  ~=l gl/2(y) 

On the one hand, since (2.17) is regularly varying of order -1/2(1 + d/fl)>~ - 1, we 
see that A(n) is regularly varying of order - 1 .  On the other hand, if ~b denotes the 
characteristic function of)(1 then since XI is symmetric 

' /  p~(O) - p~(x) - (2~) e (1 - cos(vx))~f(v)dv 

x 2 f v 6 (v)dv 
C 

~< (2.21) (b(n)) 2+d 

where the last inequality follows as in the proof of Proposition 2.4 of LeGall and Rosen 
(1991). Since (b(n)) 2+a is regularly varying of order (2 + d)/fl>>.3/2 this completes 
the proof of (2.20). 

To prove (2.15) we first note that by the monotonicity of pj(O), and using (2.13) 
we have 

~{log(g(j))}r-'pj(O)pn-j(O) ~-~{log(g(j))}r-lpj(O) 
j=l g(J) j=l g(J) pn(O) 

~{log(g(n))}r pn(O). (2.22) 
r 

On the other hand, using the regular variation of p,(0),  for any 0 < e < 1 we have 

~ {log(g(j))} r-I pj(O)pn-j(O) 
j=l g(J) 

while 

<~ ~ {l°g(g(J))}r-lpj(O) 
g(j) PnO-e)(O) 

j = l  

l {log(g(n))}r pn(O)( 1 _ 6)-d/fl, 
r 

(2.23) 

-'~ { l o g ( g ( j ) ) } r - l  p j ( O ) p n - j ( O )  

j=n~ g(J) 

n 

pne(O) Z Pn- j (O)  <~ {l°g(g(n))}r-1 g(ne) 
J=tlg 

<~ {log(g(n))}'-' pn~(O)g(n) 
g(ne) 

{log(9(n))} r-I  pn(O)e -l. (2.24) 

Thus (2.22), (2.23), and (2.24) establish (2.15). 
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Our arguments make it clear that indeed asymptotically, for each r odd we can 

replace the factor ( p j _ j ,  , ( 0 ) -  ( - 1 ) r p i _ j ~ _ , ( x ) )  = (p j_: ,_ , (O)  + pj, i, , (x))  in 

(2.9) by 2p), j,_,(0). More precisely, the error term introduced involves the difference 
(pj,__j, ,(0) - p / _ j ,  , (x))  and we see on comparing (2.14) with (2.15) that this error 
term is O({log(g(n))}k-1). This completes the proof of  (2.7). These same calculations 
immediately show (2.8), completing the proof of Theorem 2. 

Proof  of Theorem 3. We note the analogues of (2.3) and (2.13): 

and 

N 

Z ( -  f")(g(n))p,(O) 
I1-.]" 

! " )  "t 
f (g( j  ) - . 1  (g (N) )  (2.25) 

f "  ' ( g ( j ) ) f ' ( g ( j ) ) p j ( O )  ~ - f ( g ( n ) ) .  (2.26) 
F 

j 1 

Consider first the proof of (1.11). Using (2.25) to resum as in (2.4), and using our 
hypothesis (1.10) together with the law of the iterated logarithm (1.6) to ignore the 
error term, we find that we are reduced to showing 

N 
1 

lim ~ f'(g(i~)6o(X,) = 1 a.s. (2.27) 
.~--oo f(g(N)) ./:: 

A straightforward modification of the proof of Theorem 6 in Chung and Erd8s ( 1951 ) 
establishes (2.27). 

To prove (1.13) we proceed as in the proof of Theorem 2, using (2.26) in place of 
(2.13). 

The proofs of Theorems 4 - 6  are similar and left to the reader. 
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