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ABSTRACT. - Laws of the iterated logarithm are obtained for the number
of visits of a recurrent symmetric random walk on Z~ to a point in it’s state
space and for the difference of the number of visits to two points in it’ s state
space. Following convention the number of visits is called the local time of
the random walk. Laws of the iterated logarithm are also obtained for the
local time of a symmetric Levy process, at a fixed point in it’s space, as
time goes to infinity and for the difference of the local times at two points in
it’s state space for Levy processes which at a fixed time are in the domain
of attraction of a Cauchy random variable. Similar results are obtained for
the local times of symmetric recurrent random walks on Z which are in the
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468 M. B. MARCUS AND J. ROSEN

domain of attraction of Cauchy random variables. These results are related
by the fact that the truncated Green’s functions of all these processes are
slowly varying at infinity and follow from one basic theorem.

Key words and phrases: Laws of the iterated logarithm, Local Times, Levy processes,
random walks. The research of both authors was supported in part by a grant from the National
Science Foundation.

RÉSUMÉ. - Nous montrons des lois du logarithme itere pour le nombre
de fois qu’une marche aléatoire dans Z’ visite un point donné et pour la
difference entre le nombre de fois que cette marche visite un point donné et
un autre point, lui aussi donné. Le nombre de fois qu’une marche aléatoire
visite un point est le temps local de cette marche évalué en ce point.
Nous montrons aussi des lois du logarithme itere pour le temps local d’un
processus de Levy évalué en un point donné de 1’ espace quand le temps
diverge et pour les accroissements des temps locaux lorsque le processus
de Levy est à temps fixe, dans le domaine d’ attraction de la loi de Cauchy.
Tous les processus considérés ont une fonction de Green tronquée qui varie
lentement à 1’ infini et les résultats precedents sont des consequences d’ un
théorème general.

1. INTRODUCTION

In this paper, which is a sequel to [MRI], we obtain first and second

order laws of the iterated logarithm for the local times of a large class
of symmetric Levy processes and recurrent random walks that were not
considered in [MR1], including all recurrent random walks on a two

dimensional lattice which are in the domain of attraction of a Gaussian

random variable. Since the study of such random walks was the primary
motivation for this paper we will begin by stating this result.

Let symmetric random walk on the integer
lattice Z~, i.e.

where the random variables {Yi, i ~ 1} are symmetric, independent and
identically distributed with values in Z d . We assume for convenience that
the law of Yi 1 is not supported on a proper subgroup of Z d . The local
time L = ~ L n , ( n ; ~ ) E N x of X is simply the family of random
variables Lyn = {number of times j : 0 ~ j ~ n}. X has symmetric
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469LIL’s FOR LOCAL TIMES

transition probabilities p~ (~-~/) = Pn (x, y). We assume that the truncated
Green’s function

satisfies

Condition (1.2) is equivalent to X being recurrent and implies that d can
only equal one or two. Let

and note that

For x E Zd, d= 1, 2, define

The following result is for random walks on Z2:

THEOREM 1.1. - Let X be a recurrent symmetric random walk with values in
Z2 as defined above and let g (n) and ~2 ( x ) be as defined in ( 1.1 ) and ( 1.5 ).
Assume that g is slowly varying at infinity and let ~ L~, (n, y) E N x Z2 ~
denote the local times of X. Then

and for any x E Z2

Furthermore (1.7) also holds with. the numerator on the left-hand side
replaced by sup 

The condition that g is slowly varying at infinity is satisfied if Yi 1 is in
the domain of attraction of an R2 valued Gaussian random variable.

Vol. 30, n° 3-1994.



470 M. B. MARCUS AND J. ROSEN

We refer to (1.6) as a first order law because the local time appears alone
and to (1.7) as a second order law because it involves the difference of

the local times at two points in the state space. For the simple random
walk on Z2

In this case (1.6) was obtained by Erdos and Taylor [ET]. It was this result
which motivated our work. We do not think that (1.7) was known even for
a simple random walk. In general, one can find a random walk on Z2 for
which the denominators in (1.6) and (1.7) grow as slowly as desired.
Theorem 1.1 is a corollary of a larger study of laws of the iterated

logarithm for the local times of recurrent symmetric Levy processes and
random walks for which the truncated Green’s function is slowly varying
at infinity. Only real valued Levy processes have local times. However,
random walks on Z~ and Z~ can have a slowly varying truncated Green’s
function. In order to present our more general results we introduce some
notation for Levy processes. (We will often use the same symbols as we
did when considering random walks since it will always be clear to which
processes we are referring.)

Let X == { X ( t ) , t E R+ ~ be a symmetric Levy process and set

X has a local time if and only if (~))-1 E L1 (R+) for some ~ > 0,
and consequently for all 03B3 > 0, (see [K]). We shall assume somewhat more
than this, namely that

We denote the local time of X ( t , y) E R+ x R}, which we
normalize by setting

where Pt ( x - ~ ) - Pt (x, y) is the transition probability density of X. We
assume that

pt (0) is regularly varying at infinity with index minus one (1.10)

and that the truncated Green’s function

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



471LIL’s FOR LOCAL TIMES

which, because of (1.10), is slowly varying at infinity, satisfies

Condition (1.12) is equivalent to X being recurrent. Since

condition (1.10) is equivalent being regularly varying at zero

with index 1 (see e.g. Remark 2.7 in [MR1] which is also valid for

~3 = 1) or, equivalently, to X (1) being in the domain of attraction of
a Cauchy random variable. In [MR1] we considered the case where Pt (0)
was regularly varying at infinity with index -1/a, 1  c~  2, which is
equivalent to X (1) being in the domain of attraction of an a-stable random
variable. The approach of [MR1] extends to some cases in which X (1) is
in the domain of attraction of an 1-stable random variable but we also need

a new approach to handle all the cases considered in Theorem 1.2.
Let

We see from the last integral that 7~ (x) is finite.

Besides being slowly varying at infinity we will require that the function g
defined in (1.11) satisfies at least one of the following conditions:

Note that (1.14) is satisfied by the usual examples one gives for slowly
varying functions (like powers of logarithms) and that (1.14) and (1.15)
together cover all slowly varying functions with mild smoothness properties.
Clearly the conditions may overlap. Also we will show in Section 3 that
(1.15) and (1.16) can be realized by many examples.
Our main result for Levy processes is the following;

Vol. 30, n° 3-1994.



472 M. B. MARCUS AND J. ROSEN

THEOREM 1.2. - Let X be a recurrent symmetric Levy process for
which ( 1.9) and ( 1.10) are satisfied and for which the function g defined
in (1.11) satisfies at least one of the conditions ( 1.14)-( 1.16). Let

(t, y) E R+ x R~ denote the local times of X. Then

and for any x E R

Furthermore ( 1.18) also holds with the numerator on the left-hand side
replaced by sup Lfl - L~ .
Theorem 1.2. also holds for symmetric random walks with the obvious

modifications.

THEOREM 1.3. - Let X be a recurrent symmetric random walk with values
in Z d, d = 1, 2, as defined above and let p (n), g (n) and a-2 (x) be as defined
for random walks in ( 1.1 ), ( 1.4) and ( 1.5). Assume that p (n) satisfies ( 1.10)
with t replaced by n. (This implies that g (n) is slowly varying at in, finity).
Assume also that g (n) satisfies at least one of the conditions ( 1.14)-( 1.16)
with t replaced by n. (n, y) E N x denote the local times
of X. Then ( 1.17), ( 1.18) and the comment immediately following it of
Theorem 1.2. hold as stated except that the limit superior and the supremum
are taken over the integers.

Set

where Ç (A) is given in (1.3). In one dimension, i.e. for A E [-7r, 7r], we see
by (1.4) and (1.19) that condition (1.10), with t replaced by n, is equivalent
to 03C8 (A) being regularly varying at zero with index 1 or, equivalently,
to X (1) being in the domain of attraction of a Cauchy random variable.
Theorem 1.1 is a corollary of Theorem 1.3. It has a simpler statement

because (1.14), with t replaced by n, is always satisfied by symmetric
random walks on Z2 when g is slowly varying at infinity.
As far as we know, aside from the result of Erdos and Taylor just

mentioned, all the results in Theorems 1.1-1.3 are new. However, we
should mention that (1.17), for Levy processes but without the constant
evaluated, follows from [FP], as is pointed out in Theorem 6.9 [F]. All the
other earlier work that we are aware of requires that g be regularly varying

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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at infinity with index greater than zero, or equivalent conditions. See [MR1] ]
for further discussion of prior results.

This paper is an extension of [MR1]. However the results in [MR1] ]
are not expressed in terms of the truncated Green’s function but in terms
of the a-potential density of the Levy process at zero, considered as a

function of a, and similarly for random walks. The results in [MR1],
which are analogous to Theorems 1.2 and 1.3, are given in Theorem 1.4
in terms of the truncated Green’s functions. In order to make Theorem 1.4

more meaningful note that if 03C8 is regularly varying at zero with index

1  f3 ~ 2 then g is regularly varying at infinity with index 1//9, where
1 /~ + 1 /~3 = 1. In fact

THEOREM 1.4. - Let X be a recurrent symmetric Levy process which

satisfies ( 1.9) and for which the function g defined in ( 1.11 ) is regularly
varying at infinity with index 0  1 /,~3 _ 1 /2 or, equivalently, for which ~ is
regularly varying at zero with index 1  ,~ _ y) E R+ x R~
denote the local times of X. Then

and for any x E R

where ~x = 2,C3 and 1/a + = l. (1.22) also holds with the numerator
on the left-hand side replaced by sup L° - L~ .

Furthermore, analogous results also hold for symmetric random walks
with the obvious modifications.

Writing

we see that as ~3 goes to infinity or equivalently as j3 goes to one the terms
in (1.23) go to one. Thus the constants in Theorems 1.1-1.3, in which g

Vol. 30, n° 3-1994.



474 M. B. MARCUS AND J. ROSEN

is regularly varying with index zero, are consistent with the constants in
(1.21) and (1.22).
Theorem 1.4 is actually a slight improvement over the corresponding

results in [MR 1 ] . We will explain this in Section 2.
In Theorem 1.4 it is not necessary to give conditions on pt, only on g (t).

We suspect that Theorem 1.4 also holds when g is slowly varying at infinity.
This is certainaly suggested by Theorems 1.2 and 1.3 but there are some
gaps.

Remark 1.5. - Both (1.21) and (1.22) can be writen in a simple form
involving the Ll and L2 norms of the local times. Note that

and

Thus we can write (1.17), (1.18), (1.21) and (1.22) respectively as follows:

and

We see that for the law of the iterated logarithm the positive term L?
is normalized by it’s L~ 1 norm whereas the essentially symmetric term
L? - L~ is normalized by it’s L2 norm. Evaluating the norms at t divided
by an iterated logarithm term is a phenomenon that has been observed
by other authors.
Some parts of the Theorems hold under weaker hypotheses than stated.

We leave it to the interested reader to ferret this out.

The proofs of the Theorems and a further explanation of the Remark
are given in Section 2. In Section 3 we show that condition (1.15) can be
realized and explain the significance of (1.16). We also point out that for

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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processes on one dimensional spaces, pt (0) can be taken to be asymptotic
to any regularly varying function of index minus one for which (1.12)
holds whereas for symmetric random walks on Z2 , g ( n )  C log n for n
sufficiently large.

2. PROOFS

We first list some simple observations which we will use in this section.
The first Proposition is just a statement of Theorem 1.7.1 [BGT].

PROPOSITION 2.1. - Let g (t), which is defined in (1.11), be regularly
varying at infinity with index 0 _ p and set

Then

where we write f g (x) as x~ 0 to signify lim f (x)~g (x) = 1
and similarly when x ~ ~. Furthermore, a similar statement holds for
symmetric random walks with

PROPOSITION 2.2. - Let X be a Levy process with local time L° and define

Then for all integers n > 0 and t > 0 and vectors v

Vol. 30, n° 3-1994.
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where p . ( 0) * ~’z denote the n-fold convolution of p . ( 0 ) . See e.g. (2.21),
[MR2]. Using this we see that (2.5) follows easily from (2.6). Also, let us
note that by the strong Markov property

for every increasing function Ç
For simplicity we introduce the following notation

PROPOSITION 2.3. - Let g be slowly varying at infinity. Then for all a > 0
there exists a ta such that for all t >_ t~

In particular

Proof - (2.10) follows easily from the standard representation of slowly
varying functions since we can write

where lim ~ (u) = 0. (See e.g. Theorem 1.3.1 [BGT]). (2.11) follows
u-cxJ

immediately from (2.10).

PROPOSITION 2.4. - Let X be a Lévy process which satisfies ( 1.9) and let

L° denote the local time of X. Assume that g, defined in ( 1.11 ), is slowly
varying at infinity. Then for all ~ > 0 sufficiently small there exists a y’
such that for all for y >_ y’

for all t > 0, where C~ is a constant depending only on q.

Proof - We use the methods of [MR1] ] to estimate the moment generating
function on the left-hand side of (2.12). Let x be as given in (2.1). We
define it’s analytic extension to the complex plane by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let 0  a;o  1 and set F =

> 0 }. It follows from (2.23) [MR1] that

It is easy to see that and, for y > 0, that

= 1 - r~, using (2.15) [MR1], we see
that this last term

Note that

The first term to the right of the integral sign in (2.13) is finite by
(2.8) [MR1] ] (which uses hypothesis (1.9)). Thus taking y= 1 /x,~, for j
sufficiently small, we see that (2.12) follows from these relationships and
(2.2).
We now give a a simple upper bound for the distribution of the local

times of Levy processes which is valid for all Levy process but which is

sharp only when g satisfies ( 1.14).

LEMMA 2.5. - Let X be a Levy process with local time L° and let g be as
defined in (1.11). Then for all x > 0 and t >_ 0

Proof. - By (2.5) and Chebyshev’s inequality we have

independant of t. Taking n= [x], we obtain (2.14).
Vol. 30, n° 3-1994.
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The next bound for the distribution of the local times of Levy processes
is more sophisticated. It depends on Proposition 2.4 but it is useful to us
only when g satisfies ( 1.15).

LEMMA 2.6. - Let X be a Levy process which satisfies ( 1.9) and let L°
denote the local time of X. Assume that g is slowly varying at infinity. Then
for all ~ > 0 and t = t (~) sufficiently large

where C~ is a constant depending only on ~.

Proof - Let

in (2.12). Since g is slowly varying at infinity g (f gi (t) as t goes
to infinity. Therefore, by (2.12), for all 8 > 0 we have that for all t

sufficiently large

where C~ is a constant depending only on b. (2.15) follows easily by
Chebyshev’s inequality.
We next obtain a lower bound for the probability distribution in (2.15)

that will be useful to us when g satisfies ( 1.14).

LEMMA 2.7. - Let X be a Levy process and let L° denote the local time
of X. Assume that g is slowly varying at infinity. Let x (t) be an increasing
function of t such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Then for all ~ > 0 there exists an x0 and a t’ = t’ x0, x (.)) such that
for all t > t’ and x0 ~ x _ x ( t)

where C~ is a constant depending only on r~ and

for some r~’ > 0. ~a (v, t/x) is defined in (2.4).]

Proof - We first prove (2.18). Let ( t) and assume 
for some j sufficiently large. We note that for any y > x we have, for
any integer n, that

Integrating by parts and using (2.14) we have

We note that 2G’2 -1 ~ 2 is increasing for u  n - 1/2. Therefore taking
n= [(1 + b) x], for 03B4 > 0, we have that un-1/2 e-U is increasing on
0 _ u  x. Therefore

Taking y= (1 + 28) x we see that

Vol. 30, n° 3-1994.
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We use the right-hand side of (2.5) to obtain an upper bound for B2. We have

Using the left-hand side of (2.5) we see that

Note that

Using (2.23) and (2.24) and the fact that g is slowly varying at infinity we
see that for all x sufficiently large

Note that since g is increasing g (t/~) > g (tjx (t)) x ( t) and so,
by (2.17)

for all x  x ( t) for all t sufficiently large. Combining all these inequalities
completes the proof of (2.18).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



481LIL’s FOR LOCAL TIMES

The proof of (2.19) follows exactly as the proof of (2.18) once we make
a few observations. Instead of (2.20) we write

It follows from (2.5) and (2.23) that

This shows that B~ can be bounded above by the upper bound given for
B2 in (2.22). It also shows that B~ is less than or equal to the last term in
(2.21 ). The reason for this is that the last term in (2.21 ) was obtained using
Chebyshev’s inequality to find an upper bound for P° (Yt >_ u) . By (2.28)
the same technique gives an estimate no larger for P" (Yt > u). Using
these bounds for A i , B~ and B~ we get (2.19).
We now obtain a lower bound for the probability distribution in (2.15)

that will be useful to us when g satisfies (1.15).
LEMMA 2.8. - Let X be a Levy process and let L° denote the local time

of X. Assume that g is slowly varying at infinity. Let x ( t) be an increasing
function of t such that lim x ( t ) = oo, lim t / x ( t ) = oo and

Then for all ri > 0 there exists a t’= t’ (q, x (.)) such that for all t > t’

where C~ is a constant depending only on r~ and

Vol. 30, nO 3-1994.
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for some 71’ > 0.

Proof - We first prove (2.30). The proof is the essentially the same as
that of Lemma 2.7 except that the inequalities are derived differently. Let
Yt= (1 - 2r~) L? / 9 (t/n) and consider the terms Ai, B1 and B2 in (2.20)
for this Y t. Denote them by A~, B~ and B~. In order to obtain an upper
bound for B’1 we use (2.12) with y= where ~ is such that 1,
and Chebysev’s inequality, to get

As in the proof of Lemma 2.7 we will set n= [(1 + 8) x (t,)~. The condition
that t/.r, (t) is sufficiently large, together with the slow variation of g at
infinity and the proof of Proposition 2.3 enables us to write (2.32) as

where h ( n) = o for all c > 0. Using this inequality in (2.20 a) we see
that B~ is bounded above by the last term in (2.21 ) multiplied by ( n ) .
Continuing we have by (2.5) that

It also follows from (2.12) that

so, again by the slow variation of g, we get

Therefore we see that B~ is bounded above by the last term in (2.22)
multiplied by Thus we get the same critical expressions as in
the proof of Lemma 2.7 except for the terms (1 - ( n) and But
we can take h ( n )  and taking b3 we see that these terms don’t
effect the arguments used to prove Lemma 2.7. Thus we get the proof of
(2.30). The extension of proof of (2.30) to the proof of (2.31) is exactly
the same as the analogous extension in the previous Lemma.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We now develop some technical lemmas which will be used in the proofs
of Theorems 1.2 and 1.3. We can write

where

That is, the general expression for slowly varying functions has this

simplified form when g is differentiable and, of course, g’ (t) = pt (0).
Recall that

and note that by (1.10), E (u) is slowly varying at infinity. For 0 > 1 we
define the sequence {tn ~.,°°_i by

This is well defined since g is strictly increasing. We set

and note the following simple facts:

PROPOSITION 2.9.

and

9 ( 11 n)  log n 03B8n for all n sulliciently large. (2.38)

Proof - Since

for some t~ _ 1  s  tn, we get (2.36) by (2.35). To get (2.37) we note that
since g (t) is slowly varying ( tn )  tn, for all ~ > 0 and n > n (TJ)
Vol. 30, nO 3-1994.
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for some n (17) sufficiently large. This implies (2.37). To get (2.38) we
note that by (2.36)

for all n sufficiently large.

Therefore

for all n sufficiently large.

Also note that

for some tn / ( 2 log n )  tn . We see from (2.37) that lim s7z = oc
n~~

and hence, by (2.35) and (2.40)

for all n sufficiently large.

Using (2.41) in (2.39) we get (2.38).
Let ,~.~, = + Orz /2 and note that ,~n  Also let

PROPOSITION 2.10. - There exists a constant C > 0 such that for all n
sufficiently large

Proof. - By integration by parts and the fact that c ( u) is slowly varying
at infinity, we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques ’
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By (2.36) and (2.37) lim ,~~ = oo. Thus

where lim b ( n ) = 0 and where, at the next to last step, we use the fact
that ~(u) is slowly varying at infinity. Using (2.36) in (2.45) we get (2.43).
To obtain (2.44) we note that

Therefore if 03B2n ~ 2tn-1

where lim b ( n ) = 0 and we use the fact is slowly varying at
infinity. Thus (2.44) is satisfied when ,~n >_ 2 t~ _ 1. Let us now assume that
!3n  2 tn _ 1. Then, using the slow variation of E ( u ) again, we get

where we use (2.36) and the fact that -yn  1. Thus we get (2.44) in
this case also.

The result which we will use in the proofs of Theorems 1.2 and 1.3 is

given in the following Lemma.

LEMMA 2.11. - There exists a constant C > 0 such that for all n suficiently
large

Vol. 30, nO 3-1994.
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Proof. - By the definition of the sequence {g (t.",) }, either

If the first statement in (2.47) holds then Un_1 > ()1/2 - 1. If the second
statement in (2.47) holds then by (2.43) and (2.44), U~ is greater than
or equal to the right hand side of (2.46), for an appropriate choice of the
constant C. Thus we have (2.46).

Proof of Theorem 1.2, ( 1.17). - We first obtain the upper bound in ( 1.17)
when g satisfies (1.14). Recall the terms defined in (2.8), (2.9) and (2.35 a).
By Lemma 2.5 we have that for all integers n >_ 2 and all c > 0

Therefore, by the Borel-Cantelli lemma

Next suppose that g satisfies (1.15). be such that

gi ( un ) = 8’~ , (recall 6’ > 1), and note that by (2.10) and (2.11 )

Also, since the following integral diverges by (1.12),

for all n > no, for some no sufficiently large. Since g satisfies (1.15) there
exists a 8 > 0 such that

for all n sufficiently large. Choose 8 _ 90, such that (1 - 8)  1 /B. This
implies that un /log g ( ~n )  ~cn _ 1, or equivalently, using (2.10) and (2.11 ),
that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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for some 8’ > 0 and all n sufficiently large. Using (2.50)-(2.52) we now
see that

for all n sufficiently large. Using (2.53) in (2.15) we get

Thus when g satisfies (1.15) we have that

Lastly, let us consider the case when g satisfies (1.16). If

for any c > 0 then, by (2.34) and the first part of the proof of

Proposition 2.10

for some constant Ce  oo depending on e. Thus we can use (2.15), (2.10)
and (2.11 ) to obtain (2.54) when (2.56) holds. On the other hand suppose

Then we can use Lemma 2.5 as we did in obtaining (2.48) along with
(2.11) to get

So we see that (2.54) holds in this case also. Thus we get (2.55) when g
satisfies (1.16). By taking B arbitrarily close to one it is simple to interpolate
and thereby pass from (2.49) or (2.55) to the upper bound in (1.17). [Note
that since g is slowly varying at infinity t/log log g ( t) is regularly varying
at infinity with index one and hence is assymptotic to an increasing function.
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Consequently, since g is monotonically increasing, gi itself is assymptotic
to an increasing function. Also we use the fact that g satisfies (1.14) to
go from (2.49) to (1.17).]
We now show that for any ê > 0

for all B sufficiently large. It is sufficient to show that

Let tn-1’ It follows from (2.36) and the slow variation g that

(See the proof of Theorem 1.1 in [MR1] for more details).
In Lemmas 2.7 and 2.8 take t = Sn and x= x = (1 - rj /2) l2 9 

Suppose that g satisfies (1.14), then referring to Lemma 2.7, we see that
(2.17) is satisfied. Thus by (2.19) we have that

where q, r~’ > 0 are sufficiently small.
To handle the case when g satisfies (1.15) or (1.16) note that if (2.17) or

(2.29) hold along a sequence say { going to infinity then the conclusions
of Lemmas 2.7 and 2.8 hold along this sequence for n sufficiently large.
Now suppose that g satisfies (1.15). It is easy to see that (2.50)-(2.52) also
hold with un-i and un replaced by and tn. Using these, analagous
to (2.53), we get
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This implies that (2.29) is satisfied along the sequence {tn}~n=n0 for

some no sufficiently large, for x ( tn ) as defined in the previous paragraph.
Thus by Lemma 2.8 for { and (2.60) we get (2.62).

Finally suppose that g satisfies (1.16). It is easy to see that if (2.56)
holds with un replaced by tn then so does (2.57). In this case we can use
Lemma 2.8 for tn, if n is sufficiently large, and (2.60) to obtain (2.62).
If (2.56), with un replaced by tn, does not hold then (2.62) follows from
Lemma 2.7 for tn and (2.60) as long as n is sufficiently large. Thus we
also have (2.62) when g satisfies (1.16).
We see from (2.61) and (2.62) that in order to obtain (2.58) it is enough

to show that

We now develop some material which will be used to obtain (2.63). We
note that

and for t 1  t 2

Integrating on y and using the symmetry of p. and fact that pt (x)  pt (0)
for all x we see that this last term
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Combining (2.64)-(2.66) we see that

Now let us assume that t2 - t,l > (1 - c) t2 for some c sufficiently small.
Then u2 + t2 - ti > (1 - c) (u2 + t,2) and since p. is regularly varying at
infinity with index minus one we see, that if t2 is sufficiently large, then

If (2.68) holds then the right-hand side of (2.67) is less that 1-~- 2~. Recalling
the definition of a (Xtn-1’ sn /2 log n) given in (2.4), (2.67) and (2.68)
show that

for all E > 0 if n > j >_ N (E) for some N (E) sufficiently large. Also, since
g (sn /2 log n)  g (tn) = Bg (tn_1~, it follows from (2.64) that

where Un is defined in (2.42). Therefore, it follows from Lemma 2.11, that

Also, since a (Xtn-1’ sn / 2 log n)  1 we see that
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(2.69)-(2.72) enable us to use the Paley-Zygmund Lemma (see e.g.

[Ka] Inequality 2, pg. 8) to verify (2.63). This completes the proof of
Theorem 1.2, (1.17).
The next proposition is an analogue of Proposition 2.2 for the differences

of local times.

PROPOSITION 2.12. - Let X be a Levy process with local times ~ (t, x) E
R+ x R} and define

Then for all integers n > l, real numbers v and t sufficiently large

Proof. - In the same notation used in (2.6) we see from (2.33), [MR2] that

which gives us the right-hand side of (2.74). Note that by (1.13)

Using this and the first equation in (2.75) we see that
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for all t sufficiently large. This gives the left-hand side of (2.74).
The next proposition is an analogue of Proposition 2.4 for the differences

of local times.

PROPOSITION 2.13. - Let X be a Levy process which satisfies ( 1.9) with
local times {Lxt, (t, x) E R+ x R} Assume that g is slowly varying at
infinity and let Zt be as defined in (2.73). Let ~ be a random variable

satisfying P (~ = 1 ) = P (~ _ -1 ) = 1 / 2 which is independent of X. Then
for all r~ > 0 sufficiently small and for all t > 0 there exists an y’ such
that for all for y ~ y’

where Cry is a constant depending only on q.

Proof. - This proof is similar to the proof of Proposition 2.4 except that
we use the first equation given in Proof of Theorem 2.2, (2.10) [MR1]. [In
adapting the proof of [MR1] we take s = (2~ (x) ~ (x°)-1/2, Xo = 1/g
and use Lemma 2.1 of this paper].

Proof of Theorem 1.2, ( 1.18). - Comparing (2.5) and (2.12) with (2.74)
and (2.78) we see that (t) and (t) satisfy essentially the same
moment and moment generating function inequalities. Especially when we
note that, by the slow variation of g, a (v, 2i6) ~ a (v, u) as u goes
to infinity and that it is alright to restrict ourselves to even moments.

Inequalities (2.5) and (2.12) were used to prove (1.17) for and

therefore, except at two points the proofs also hold for cZt/ gl/2 (t). [Note
that (1.18) remains the same with or without multiplying the numerator
on the left-hand side by c].
The first of these points is minor. We did not provide an analogue of (2.7)

for Zt. However, the only place we use this result in the proof of (1.17) is
in (2.28) and we only used it to show that EV ( (L° )’n ) was bounded above
by the upper bound given for E° ( (L° )‘’~’~ ) in (2.5), where m is an integer.
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This is also true, by (2.74), for cZt for even integers. As we remarked
above it is alright to restrict ourselves to even integers.
The second point, which is more serious, relates to our use of the

monotonicity of L~ in t to interpolate in (2.49) and (2.55). Clearly, L~ - L~
is not monotonic in t. We handled this point in [MR1] ] by a martingale
argument. Following the proof of Theorem 1.2 in [MR1] ] and using the
triangle inequality and Lemma 2.9 of [MR1] ] we get

for all s > 0. This shows that all the upper bounds for the moments

and moment generating function of EZt that we obtained also hold for

~ sup Z~. Thus, analogous to (2.49), we obtain

when g satisfies (1.14) and the same expression with g replaced by gi
and tn replaced by un when g satisfies (1.15) or (1.16). Furthermore, the
interpolation between the ~ tn ~ or ~ un ~ is simple. This completes the
proof both of (1.18) and the comment immediately following it.

Proof of Theorem 1.3. - Two sets of inequalities are used in the proof of
Theorem 1.2. Those coming from [MR1] ] and those given in Proposition 2.2
which are taken from [MR2]. In each of these references we explained why
these inequalities are also valid for symmetric random walks, (with obvious
modifications). Since the proof of Theorem 1.2 only depends on these
inequalities the same proof also gives this Theorem.
The next Proposition will be used in the proof of Theorem 1.1. It must

be well known. Nevertheless, for completeness and lack of a suitable

reference we will include a proof.

PROPOSITION 2.14. - Let X be a symmetric random walk on Z2 and let pn
be the transition probabilities. Then

Proof. - By the assumptions on Yi 1 the characteristic function Ç is not
degenerate. This implies that
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for some 0  po  1/10, where A = (Ai, A2). Furthermore, since ~ (~) is
continuous, 03C8 (A) is bounded away from zero on [-03C0/2, 7r /2]2 n {(03BB21 +
~2)1~2  By this observation, (1.4) and (2.80) and the periodicity
of 03C8 (A), we have that

which gives us (2.79).

Proof of Theorem 1.1. - The main point here is that ( 1.14) is satisfied

by symmetric random walks on Z2. In showing this there is no loss in

generality in assuming that pn (0) is continuous and decreasing. Then

h (u) = ps (0) ds satisfies h (n) - g (n) oo. We will simply
write h (u) as g (u). (See, e.g. Theorem 1.3.3, [BGT].) Actually, this is what
is done to prove Theorem 1.3, although we didn’t mention it explicitly.
Using (2.79) and Proposition 2.3, we see, in the notation of (2.8) and (2.9),
that for all n sufficiently large

This last term clearly goes to one as n goes to infinity. Thus we see that
(1.14) is satisfied by symmetric random walks on Z2 . This enables us to

simplify the denominators in the analogues of (1.17) and (1.18) for random
walks to get (1.6) and (1.7).
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There is another point which we must consider. The hypothesis (1.10),
with t replaced by n, of Theorem 1.3 is replaced in Theorem 1.1 by the
weaker hypothesis that g is slowly varying at infinity. To verify this we
must reconsider the proof of Theorem 1.2. Theorem 1.2 is proved for g
satisfying any of the hypothesis (1.14)-(1.16). However, the proofs used
when g satisfies (1.14) are relatively simple and it is not difficult to check
that (1.10), with t replaced by n, is not used in this case until the final

step of the proof, the verification of (2.61 ). We complete the proof of this
Theorem by verifying (2.61) using only the facts that g is slowly varying
at infinity and satisfies (1.14).

By (1.14) and (2.70) we have that

where c and £’ can be taken to be arbitrarily small for 0 sufficiently large.
(Note that in this argument we are obtaining lower bounds so 03B8 is taken to
be large). Using (2.83) and the obvious fact that a 8n/2 log n)  1,
we get (2.69) for all n > j for all j sufficiently large. This is all we

need to use the Paley-Zygmund lemma to obtain (2.61) as in the proof of
Theorem 1.2. This completes the proof of Theorem 1.1.

Proof of Theorem 1.4. - This is just Proposition 2.1 of this paper applied
to Theorems 1.1 and 1.2 of [MR 1 ] except for one minor point. In [MR 1 ]
we required that ~ (A) be regularly varying at zero with index 1  /3 ~ 2.
This was not necessary. It would have been enough to simply require that
x (a) be regularly varying at zero. We will explain this in the context of
Theorem 1.4. We assume that g is regularly varying at infinity with index
0  1/,~  1/2. This implies, by Theorem 1.72, [BGT] that g’ (t) = pt (0),
which is monotonically decreasing, is regularly varying at infinity with
index greater than minus one. As we show in (2.49) [MR1] ]

Thus 7/;-1 and hence 9 is regularly varying at zero. Therefore, it is enough
to assume that g is regularly varying at infinity in Theorem 1.4.

Proof of Remark 1.5. - The only point here, other than a change of
notation, is explained by (2.11 ) when g is slowly varying. It is trivial to

see that (2.11 ) also holds when g is regularly varying with index greater
than zero.
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3. EXAMPLES

We first show that there are many examples of real valued Levy processes
and symmetric random walks on Z 1 which satisfy the hypotheses of

Theorems 1.2 and 1.3.

PROPOSITION 3.1. - Let h (t) be a real valued function which is regularly
varying at infinity with index minus one. There exists a Levy process
~ X (t), t E R+ ~, with transition probabilities p~, such that

and similarly for symmetric random walks on Zl.

Proof - We will give the proof for Levy processes. The proof for
symmetric random walks is similar. We have

where v a Levy measure, i. e. - ~0 (1 A x2) dv [x, oo )  oc. Aside from

(1.9) we do not impose any conditions for 03BB ~ Ao > 0, for

some Ao small. This is equivalent to saying that, aside from the weak
restriction (1.9), there are no restrictions on v near zero. Indeed for our

purposes we need only consider the part of v on [xo, oo), for some Xo > 0.
Then by results for characteristic functions, (see e.g. [P]), we have

Since v ~~, can be taken to be any decreasing regularly varying function
of index minus one, we can find functions 1/J (A) which are asymptotic to any
increasing regularly varying function of index one at zero. Furthermore the
fact that ~ (A) is asymptotic to an increasing function is not a restriction,
because all regularly varying functions of positive index are asymptotic
to an increasing function. If 03C8 is regularly varying at zero so is 

Thus, since (2.84) also holds for j3 equal one, (same reference), we see that
Pt (0) ~ ~-1 (1/ t ) /1r as t goes to infinity. This proves the Proposition since
we can always choose v so that ht (0) N (l/t)/7r as t goes to infinity.
Comparing Propositions 2.14 and 3.1 we see that we get a much richer

class of examples for processes on R~ or Z1.
The next Proposition will be used to show that we can find Levy processes

for which (1.14) does not hold and (1.15) does.

PROPOSITION 3.2. - Let
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where lim h (t) = 0 and lim h (t) log t = ~. Assume also that h’ (u)  0
t-cxJ t-cxJ

for u > uo, for some uo suficiently large and satisfies

Then g is slowly varying at infinity and

In particular, if for t sufficiently large,

and

for k > 3.

Proof. - We will prove (3.6). The proof that 9 is slowly varying at

infinity is similar. We have

We see from this that (3.6) holds if

This follows from (3.5) since

for t sufficiently large, for all 8 > 0. The examples in (3.7)-(3.9) follow
immediately from (3.6).

Consider g, as defined in (3.4), for the functions h given in (3.7)-(3.9).
It is easy to see that g’ is regularly varying at infinity with index minus
one in all these cases. Thus by Proposition 3.1, in each of these cases, we
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can find a Levy process with / (~) and hence with corresponding
g (t) N g (t). We see that (1.15) is satisfied by all the examples whereas
(1.14) is only satisfied by the example in (3.7). This argument is also valid
for symmetric random walks on ZI.
We will now consider condition (1.16). Let f (t) = g (t) /(tg’ (t)). Note

that

By the representation theorem for slowly varying functions, we see that
lim / (~) = oo. Also

If f (t) is increasing then (1.16) holds with C = 1. Clearly mild smoothness
conditions on f (t) could make the last integral in (3.10) negative but we
do not know if (1.16) is true for all slowly varying functions g that are
truncated Green’s function. We mention (1.16) because it seems to straddle
(1.14) and (1.15). By Proposition 3.1, g’ (t) can be chosen at will. Hence
it is easy to find examples of processes for which (1.16) is satisfied. This
argument is also valid for symmetric random walks on Z 1.

Finally, it is easy to see that for symmetric random walks on Z2, we can
take pn (0) asymptotic to any regularly varying function at infinity of index
minus one as long as Proposition 2.14 is satisfied. The simplest way to see
this is to take Y1 = (~l , ~2 ) where ~l and ~2 are independent symmetric
random variables on Zl. Then pn (0) = Pn,l (0) pn, 2 (0), where pn, i (0)
are the transition probabilities for ~2, z = 1, 2. Our assertion is obvious

now since we can take ~l and ~2 to be any random variables in the domain
of attraction of the normal.
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