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1 Introduction

Let S, be a strongly aperiodic stable random walk, i.e. in the domain of
attraction of a non-degenerate stable random variable U of index 3 in R4.
Thus

Sn £

—=U

n
for some b, which is regularly varying of order 5.

Given k independent copies S,(ll), .. .,Sgk) of S, we define their k-fold
intersection local time by

t
1) L= 3 852D -0,z 8(5E - SET zi1)

11,..,0k=1

where
. _J 1 ifi=y
6(i.5) = { 0 otherwise
is the usual Kronecker delta function and ¢ = (21,...,%k-1) € (ZH¥ Y te

7. This definition is extended to z € (RY)¥-1, t € Ry by linear interpo-
lation.

Let Z; denote the stable Levy process of index B in R4 with Z; = U.
We use py(x) for the transition density of Z;. If Zt(l), . ..,Z,(k) denote k
independent copies of Z;, we set

or(e, z,t) = / pc(zgf)—zg)—zl)---pe(zg':)—zg’:j)—xk_l) dsy ... ds

k

where Dy = {(s1,...,5%) € R¥|0<s; <...<sp <t} It is known that
if B > d — d/k then ax(e, z,t) converges, as ¢ — 0, to a random variable,
called the k-fold intersection local time, and denoted ax(z,t). Convergence
is locally uniform both a.s. and in all

LP spaces. The k-fold intersection local time ax(z,t) is jointly continuous
in (z,1).
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Theorem 1 If 3 > d —dfk then
Ii(bpz, nt) bF-D/n* — ay(z,?)

as n — oo , where we have weak convergence of processes in C(Rd(""l) X
Ry).

Such a theorem is referred to as a uniform invariance principle for inter-
section local times. It ”uniformizes” our work in [5] where the convergence
in Theorem 1 is proven for fixed z and ¢. Our present theorem was inspired
by the work of B ass and Khoshnevisan [1, 2] who establish Theorem 1
for random walks with finite variance, in which case 8 = 2 and b, = /n.
Their work, in turn, was motivated by the uniform invariance principles of
Perki ns [4] and Borodin (3] for ordinary local times. We should also men-
tion that in [2], Bass and Khoshnevisan obtain a strong invariance principle
for intersection local times of certain random walks. More preci sely, they
show that if a random walk converges almost surely to Brownian motion
at a certain rate, then this will also hold for their intersection local times.

2 Proof of Theorem 1

The proof of a uniform invariance principle consists of two parts: a proof
that the finite dimensional distributions converge, and a proof of tightness.
The proof that the finite dimensional distributions converge proceeds al-
most exactly as in [5] where convergence of the marginal distributions is
established. We shall only recall the basic ideas and mention the necessary
modifications.

By a change of variables, for z € (Z4)¥~!/b,, t € Z4+/n we have

(2.1) Li(n, z,t) % I (baz, nt) b4 /n*

- nzt _1__ f[ 1 / explip; Sg) - Sg_—ll) - bnxj_l)dp-
1 nk j=2 (27r)d lpilogmbn ’ bn !

i1, 0=

def

where for a vector y = (¥1,- -, ¥a) € R? we use |ylo = max; |y:].
We then define a ’link’
def 15 1
(2.2) Li(e,n,z,t) = =TI} —
il,...,Xi:;,:l nk ]—I—I2 (2”)(1 Ipilo<mbn
S9) —8UD —bpzjy
exp(ip; i) ®(p;) dp;
n

where ®(p) is the characteristic function of Z, i.e. the Fourier transform
of pe(z).
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In lemma 1 of [5] we essentially prove that
[|Le(n,z,t) — Li(e,n, z,t)||2 < ce”

for some ¢ < 00, > 0 uniformly in (z,t) € RA¥=1 x [0, T] for any T < oo.
Hence for any fixed A\;, z;,8; = 1,...,m, if we set

m
L(C, n) d'gf Z /\;Lk(f, n, z;, t,')
i=1

and .
L(n) € > XiLi(n, 2, 1)
i=1
we have that . .
(2.3) |E(e 1)) — E(e'E(e™)| < ce.

On the other hand, it follows from the locally uniform convergence of
ak(e, z,t) to ag(z,t) that if we set

afe) = Z Aiag(e, 2, t;)

i=1
and
def =
a= Z/\iak(zi,ti)
i=1

we can choose €y > 0 such that for any given § > 0 we have both cef < 6
and

(2.4) |B(e™*) ~ B(e (V)| < 6.
From (2.2) we see that

(2.5) Lg(e,n,z,t)

nt k (4) (j-1)

1 Sij "Sij_ —bnzj_y —eonl/?

= 2 lleal 3 )dp; + Ofe™ "),
j=2 "

£1,..,ik=1

We see from this, using [6], that we can find ng such that for all n > ng we
have

|E(eHe0m) - B(ei(@)] <6,

Together with (2.4) and (2.5) this shows the convergence of finite dimen-
sional distributions.

To prove tightness it suffices to show that we can find some ¥ > 0 such
that for any even m

(2.6) E{(Lx(n,z,t) — Li(n, 2", )"} < ¢|(z,t) — (', )™
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uniformly over n € Z,, z,z’ € R? and t,#’ € [0, T).
We begin by showing how to get a bound on

E{(Li(n,=,t))"}

which is uniform in n € Z4, ¢ € R? and ¢ € [0, T}.
accomplish this, it will be easy to establish (2.6).
Recalling (2.1) we have

Once we see how to

(2.7)  E{(Le(n,z,1))™)}
m nt 1 k 1
=H]l Y F1lgy
h=114y,p,...,8k,2=1 iji=2
S9 _SUD _poa
/ eXp(ipj,n —E—— =) dpjn}
IpinloSxba n
1 I
= (2m)dk=T)m /lle.hISrb.. F(p,z) 1;[ Fm
< (Pi,p — Pi+1,n)
S Bl SRRSO ) dp
£5,1,-..,85,m=1 h=1
where i
F(p,z)=exp(iy_ Y pjnzj-1)
h=1j=2
and we have set p; p = pry1,4 = 0.
Let #!,..., 7* be k not necessarily distinct permutations of {1,...,m}
and let
A(wl,...,r"):{ij,hlij’xl,-gij,rl,-“;j:l,...,k;lzl,. ,m} .
and note that on A(xl,..., 7*) we have
.~ (Pin —Pitih
(28) Blexp(i'y it = Pit1h) 56
h=1 n
= E{exp(i 3 u;n(S)  — 89 )/b,))
=[] o™ "1 (4 n/bn)
h=1
where
#(u) = E(exp(iuS1))
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and
A
Ujh = Z(P,-,r{ = Piy1,xf)-
=1
Note that
(2.9) span{ujslh=1,...,m} = span{p; n — pj+1,hlh=1,...,m}
and that if #/ denotes the inverse of the permutation 77 we have
(210 O L
If we define
1 nT .
Gr(n) u) = ; ZO I(P(u/bn)llr
J:

then it is clear from the above that (2.7) can be bounded by a sum over

regions A(x!, ..., 7*) of integrals of the form
k m
(2.11) [T T] Gi(n, ujs)dp

IPinlSaba;j=2,.k j21 520y

k k m
<JIt/ IT TG, uin) dppt-nrs
i=1 VIPialSwbai =2,k 5 0 o

By [5] we know that for any ¢,7 > 0 and T < 0o we have
c
1+ ((u))P-<

where ((u)) denotes the norm of the smallest vector which equals 4 mod
2m. Since, by (2.9), for any i

G"(n! u) S

span{ujnlh=1,....m;j=1,... k j# i}
=span{pjnlh=1,....m; j = 2,...,k}
we have that (2.11) and hence (2.7) is bounded uniformly if k/(k—1)8 > d.

We now show how to modify the above estimates to get (2.6). First ,
we have

(2.12E{(Li(n,z,t) — Li(n, o', )™}
< E{(Li(n,z,t) — Li(n, ', )"} + E{(Li(n,2',t) — Li(n, 2, t'))"}

and we can handle the z and ¢ variation seperately.
The first term in (2.12), the z variation, can be written as in (2.7) except
that the factor F(p,z) will be replaced by

m k k
H(p,z,2") = [[{exp(i Y pjazic1) —exp(i 3 pjnz)_1))-
h=1 =2 ji=2
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Since for any 0 < § < 1 we have

m k
1H(p,z,2)| < ¢ [T Ipsah)’lz — 2/}

h=1 j=2

and using (2.10) for any ¢ = 1,...,k we have

h=1j=2
m k

<cIT > lpsn—pi-1al
h=1j=1,j#i
m k

<c[I TII t+1pin—pi-val
h=1j=1;,j#¢
m k

<el TI 1Hluje—iasl
h=1j=1;j#s
m k

<e[T TI 1+luml
h=1j=1;j#i

it is clear that by choosing § > 0 sufficiently small we can achieve the
desired bound.

The second term in (2.12), the t variation, gives rise to a term similar
to (2.7) except that for each I;1 = 1,...,m the indices {i1,. ..,1k,1} TUN
through the set A = [0, nt]* — [0, nt] . Using (2.8), we can bound the ¢
variation by a sum over regions A = A(x', ..., 7k) of integrals of the form
(2.11), except that the integrand is replaced by

nlcm Z H].—.[hpujh/b

AmnAj=1h=1

k m
< (Ao (T TT s

k m
t'|m/e
Scli | I_I]_:[ +( U]h )(p /4

for any ¢, ¢ satisfying 1/¢ 4+ 1/¢’ = 1. It is now clear that by taking ¢’
suficiently close to 1 we can obtain the desired bound on the t variation in
(2.12). This completes the proof of our theorem. O
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