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SOBOLEV INEQUALITIES FOR 

WEIGHT SPACES AND SUPERCONTRACTIVITY 

JAY ROSEN(1) 

ABSTRACT. For $I E c~(R")  with $(x) = al XI'  f s  for Ixl Z xo, 

a, s > 0 ,  define the measure dfi = exp(- 2@)dnx on  R ~ .We show that 

for any k E Z+ 

$lf 121~g(lfl)l
2sk/(s+ 1) 

d r  

As a consequence we prove e-tv*' * : L~(R" .  d r )  -+ L ~ ( R " ,  d r ) ,  p. .# 1, 

-, is bounded for all t > 0. 

1. Introduction. The classical Sobolev inequalities state 

where p = (I/q - k/n)-', 1 <p <w, a is an n-tuple, a = (al, . . . ,a,), and 
D& = aDl /ax ; l  aDn/ax,"n 1141. 

Recently, L. Gross has proven a beautiful analogue of the Sobolev inequal-
ities for the Gaussian measure dv = ( 2 ~ ) - ~ / ~ e x ~ ( -1x12/2)dnxon Rn [ I ] .  This 
"logarithmic" Sobolev inequality states 

Furthermore, Gross has exhibited a function f € L2(dv) with 8:=, llaf / a~~ l l :~ , ,~ ,  
<w but 

J ~ f ~ ~ l g ( ~ f i ) l g + ( l g + ( I f ~ ) ) e x p ( -I X I ' I ~ ) ~ " ~= w, 

showing how good his inequality (2) is. Similar, higher order inequalities for the 
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Gaussian measure have been proved by G. Feissner [2]. 
If $ E C(Rn) with I exp(-24) d n x  <.o let us define the weight space 

L ~ ) ( R " ,4) to  be the completion of Cr (Rn)  in the norm ~ f C , , , ~ l l D ~ f1 l 2 , @ ,  where 

- SIgl2exp(-24)dnx 
@ jexp(-2$)dnx 

The main aim of this paper is to develop a method for obtaining precise 
Sobolev inequalities for a large class of weights 4, 

To illustrate our results assume $ E c2(Rn),  with $ = a l ~ l " ~for large 
1x1 2 xo ;  a >0,s > 0. We will show that 

This result is best possible in the sense that for any m E Z+ we exhibit f E 

Lik)(Rn, 4) with 
m 

L. Gross has also shown [ I ]  how 'logarithmic' Sobolev inequalities can be 
used to prove that e-' V* ",t > 0, is a hypercontractive semigroup. Recall that 
a selfadjoint contraction semigroup e-'F on a probability space (M, dp)  is called 
hypercontractive if e-'F: Lq - L p  is bounded for p, q # 1, m and t > t(p, q) 

[3]. In particular E. Nelson has shown 143 that for the Gaussian measure d v  = 
(2n)-"12exp(- 1x12/2)dnx on Rn,  

is bounded, p, q # 1, m, only if t 2 lg([(p - l)/(q - I)] '), in which case it is 
a contraction. Using our precise Sobolev inequalities, together with Gross's theo-
rem, we show that for a large class of weights $, 

p, q < I ,  m, is bounded for all t > O! We call this property of the semigroup 
e-'v ' supercontractivity. 

We note that J.-P. Eckmann [5] has independently extended Gross's methods 
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to prove that e-' V *  ''is hypercontractive for many weights @.We have been 
able to push his technique to prove supercontractivity, but it is not powerful 
enough to prove our precise Sobolev inequalities. 

In 9 92 and 3 we prove our basic Sobolev inequalities. Supercontractivity 
is proven in 94. In 95 we describe some weights which satisfy the general require-
ments of our theorems, and we show that in many cases our results are best pos-
sible. 

We remark that our inequalities have also been used to determine the fine 
fluctuations of paths in the P($),Markoff processes [9]. 

ACKNOWLEDGEMENTS.I would like to thank my thesis advisor, Professor 
Barry Simon, for suggesting the sort of problems discussed in this paper, and for 
streamlining my original proof of Theorem 1. Professors Edward Nelson and Abel 
Klein have made helpful suggestions. 

2. First order inequalities. Throughout this paper we assume @ E c2(Rn)  
with $ exp(- 24)dnx <w. 

THEOREM1. Let r >0 be such that 

then 

If, in addition, r 2 1, then 

Ilf I'k ( l f  l)exp(- 2@)dnx 

(7) c(f ,  (v * v -I- 1) l l r f )  -I- llfll;,@lg(ll fl12,@), 

f EQ((V* v ) ' / ~ )  

and 



370 JAY ROSEN 

PROOF. We may assume J exp(-2q5)dnx = 1. We will first prove our 

theorem for all f such that I l  f l12,0 = 1. For such an f we have 

Setting h = (1gt(i f 12))'  >, 0 we can write this as 

Let 

u = { x E R ~ I ~ ~ ~ ~- 2 @ < 0 ) ,  V =  uC= { x E R ~ I ~ ~ I ~- 2 @ > o ) .  

Since exp( ) >, 0,  (10) implies 

(1 1) Jv exp(hllr - 2@)dnx < 2. 

Since, by the definition of V, hf; - 26,. > 0, (11) tells us that [h:; - 2ml 

E nLp(Rn ,dnx)  and JV 1 d n x  G 2, hence 

Now, the classical Sobolev inequality (1) implies [8] that f <dl1f [ I n ( - A + 1) 

as forms on L2(Rn, dnx)  for all f E Ln(Rn, dnx),  so that (12) implies 

If r 2 1, the convexity and monotonicity of x r  now give 

A similar argument works for 0 < r < 1, using the monotonicity and subadditivity 

of xr. 
Since the definition of U requires 

we have, combining (13) and (14), 

(15) (lgc(l f 12))' = h <k(- A + I@(x)lr + 1). 

Then by our hypothesis (5) 

(16) (lgf (1 f 12))' < k(- A + V@ V@ - A@+ 1) 
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as forms on L2(Rn, dnx),  where k is independent off ,  if I I  f 1 1 2 , $  = 1. 
Now, multiplication by exp( -@)is a unitary equivalence from L2(Rn, 4) to 

L2(Rn, dnx),  which takes v * v into 

so that (16) is equivalent to 

as forms on L2(Rn, @). 

In particular (17) gives 

which implies (6) for I l  f 1 1 2  ,$ = 1. 

Furthermore, if r 2 1 we may use Loewner's theorem [ l o ] ,  which tells us 

that for r > 1 the r th  root is a monotone operator function. (17) then implies 

which, as before, yields (7) for I l  f 112 ,@ = 1. 

(6) and (7) now follow for all f from the following lemma. 

LEMMA2. Let d p  be an arbitrary probability measure and let F be an 

operator on L 2(dp) with 

forall  f ED(F) ,  I I  f l l ,  = 1. If r >  1, then for any p, q f l/p 4- l / q  = 1, 
we have 

~ l f l211g(1 f l)lrdp 4 q r - ' l l ~ f  11: + pr-'11 f 11: Ilg(ll f I12)Ir, aN f ED(F). 

and if r = 1 the inequality J l f  121g(lf l ) d p  G l l ~ f l l ~ ,f E D(F), I l f  112 = 1, im-

plies 

J 2P I + I I I 1 2 ,  f ED(F). 

PROOF. Consider first the case r > 1. Take f E D(F). By assumption 

J l f  l2l1g( l f  llllf l12)lrdp G l l ~ f11:. 
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By convexity and monotonicity of xr ,  for any p, q # 1, =, l / p  + l /q = 1, we 
have 

The assertion for 0 <r G 1 follows similarly using the monotonicity and sub-
additivity of xr. The assertion for r = 1 is trivial. 

Finally, (8) follows from (7)for f normalized by the spectral theorem and 
Holder's inequality. 

3. Higher order inequalities. 

THEOREM3. Let r > 0 be such that I$(x)l 'G a(v4 v $J - A4 + b); then 
for all k E N 

PROOF. Let us prove (19) by induction on k. The case k = 1 is our first 
order inequality (6). Assume we have proven (19) for k = 1, . . . ,m. Let us 
show that 

Then, by homogeneity, and our usual use of monotonicity, convexity and sub-
additivity 

Jlf1211g(lfl)lr(mt1)ex~(-2ndnx 
(21) m f l( I I , + I I , ~ ~ f l 1 2 . 6  

Icul=O I i.:: + 17. 
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Then, since ( l g ( ~ ) ) ' ( ~ + ' )< bx, x > 1 ,  for some b , (21) yields (19) for the 
special case I l  f l 1 2 , @  = 1. The general case now follows by Lemma 2 .  

It suffices b y  continuity to prove (20) for f€ C r ( R n ) .  We have 

If we set g = ( f  + 4)' (lg( f + 4))rm12we can write (22) as 

where the last line follows from our first order inequality (6). 
Now 

=a&? - a 
ax, axi ((f * + 4)' ( l g ( f  + 4))'rnI2) 

Therefore 

Now, Young's inequality [ 6 ] , [7] states that 

so that, by our induction hypothesis (19), 

I f f  l=O 
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Similarly we see that 

11g11:,@= J ( f 2+ 4) ( M f 2  + 4))'" exp(-24)dnx 

(23), (24) and (25) now prove (20), completing our proof of Theorem 3. 

4. Supercontractivity. 

THEOREM4. Let r > 1 be such that I @(x)lr< a ( v @  V @  -A@ + b); then 
e - ' ~ * ' v  is a bounded map from Lq(Rn, @)to L,(Rn, 4) for any q,  p # 1, w, 

for all t > 0. 

PROOF. TO prove our theorem we appeal to a result due to L. Gross [ I ] ,  
in a generalized form of J.-P. Eckrnann [ 5 ] .  

"Let p be a probability measure on Rn and let G be a selfadjoint operator 
on L2(dp). Suppose that the set C; of twice continuously differentiable func-
tions with bounded first and second derivatives is a core for G and that.f7(Gg)dp 
= .f V ?  v gdp, f,g E C: . If there exist constants 0 < u and u < such that 

J1fl2lg(lf l)drc<u(f,  G f ) +  ullfll: + llf11:1g(llfl12), 

then I 1  e-*' 11 < *V.'*
q,l+(q-1)e2*lu,d@ 

Now Theorem 1 tells us that, with 

J l f  121g(lfl)dli < c(f, (v  * v + l)li'f) + llfll: $ ( 1 1 f 1 I 2 ) .  

By the spectral theorem this implies that for any e > 0 there exists a c(e) such 
that 

~ f ~ ' l g ( ~ f ~ ) d ~4e(f, v *  . v f )  + c ( ~ ) I I ~11: + II~II:I ~ ( I I ~ I I ~ ) .  

The general assertion of our theorem follows from the result quoted. 

5. Applications. 

THEOREM5. If 4 - a l ~ l ' + ~ ,s >  O , a >  0 , and  Da4 -aDalxll tS,  la1 = 

1 , 2 ,  as 1x1 -+ w, then for any k E Z+ 

Ilfi2i1g(lf l)12sk/(s+1)exp(-24)dnx 
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f E Lik)(Rn,@).If s > 1 ,  then 

f~ L!~ ) (R" ,n, I I ~ I I , , ~= 1, 

and 

is bounded for all t > 0.  Furthermore, for any s > 0 ,  if 

then for any rn E z', there are f E Lik)(Rn,@)with 

PROOF. (26), (27), and (28) follow from Theorems 1 ,  3 and 4 
once we have verified I @ ( X ) ~ ~ ~ / ( ~ +' )  <a(V@ V @- A@+ b) ,  but by our hy-
pothesis both I @(x)l2 S / ( S C  ' ) and V @ V @ - A@are - ~ ( 1 x 12s) .  

To prove the second part of our theorem, consider a function f such that 

for 1x1 2-x ,  large, f ( x )  = 0 for 1x1 G x ,  - 1 and f ( x )  E C"(Rn), where we 
have used the notation lgi(x) to mean that lg(* Ig(x) * )  occurs j times. 

To see that f E L?)(Rn, @)compute for a = ( a l ,  . . . ,ol,), la1 = k ,  

+ terms smaller at = using our assumption (29),and in fact, by (29), 

On the other hand, since I @(x)l- O(lxlS+')  
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REMARK.Let P(x)  = 2?Joaixi with > 0, and consider the anharmon- 
ic oscillator H in L ~ ( R ~ ,d x )  

The normalized groundstate Q(x) is strictly positive and can be written as Q(x) = 

exp(- @),for Q, satisfying all the requirements of Theorem 5 with s =p [7], 

[ I l l ,  [I21 
For extensions to  anharmonic oscillators in L2(Rn, d n x )  see [13]. 
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