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SECOND ORDER LIMIT LAWS FOR THE

LOCAL TIMES OF STABLE PROCESSES

by Jay Rosen1

1 Introduction

In this paper we ’obtain second order limit laws for the local times of stable and related

Levy processes. This work generalizes the results obtained for Brownian local time by
Papanicolaou, Stroock and Varadhan [1977] and Yor [1983].

For now, let Xt denote the symmetric stable process in R1 of order ,Q > 1, which is
known to have a jointly continuous local time Lf (Boylan [1964]).

Set~~~ 

(f ~ f ~a-1= - (l.l)

Theorem 1.1 Let f be a bounded Borel function on Rl with compact support such that

f (x)dx = 0.

If Xa denotes the symmetric stable process of order ~Q > 1 in Rl, with local time Lt
then

1 
(1.2)

as A --> oo, where ~ denotes weak convergence of processes in C(?Z+), Wt denotes a
real Brownian motion independent of X and

c = ~0(p1( 0) - p1( 1/ s1/03B2))
ds s1/03B2 (

1.3)

When X is Brownian motion, i.e., ~3 = 2, this is the result of Papanicolaou, Stroock
and Varadhan [1977], which is also presented in Ikeda and Watanabe [1989], p. 147.

We note that by scaling, (1.2) is equivalent to

1Supported in part by NSF DMS-88022 88, PSC-CUNY Award and US-Israel BSF 86-00285.
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where 

fe (x) = 1 ~f( x ~ ).

To state our next theorem, let

0393(03B3)(x, Y) " ) + |y|03B3 - |x - y|03B3) . (1.5)

For any 0  q  I , there exists a continuous mean zero Gaussian process, B(03B3)s(x) with
covariance

l© (Bj’ (z) B$~~ (y)) = (s A , (1 .6)
see Yor [1988] . In the following, we always take B(03B3)s(x) to be independent of X.

Theorem 1.2 Let L? denote the local time of the symmetric stable process of order Q > I
in Then

1 ~(03B2-1)/2 (L~xt - L?) + 2c B(03B2-1)L0t(x) (17)

as e -+ 0, where now denotes weak convergence of processes in C(R+ X R), B(03B2-1) is

independent of X, and c is given in (1.3).

When X is Brownial motion, I.e. Q = 2, this is the result of Yor [1983] .

We next present several variations on Theorem 2, where t is replaced by a random
time.

Theorem 1.3 Let L? denote the local time of the symmetric stable process of order Q > I
in and ( an independent exponential random variable of mean I, then

~g ~i>/~ (Ll~ - L() 6 2~ (18)

as e - 0, where 6 denotes weak convergence of processes in C(R); B(03B2-1) is independent
of (, c is given by (1.3) and

u1 (0) = 1 203C0 / 1 + dP ]p[° (1.9)

is the 1-potential at 0.

Define

Tu = inf{t | L0t > u) (1.10)
We will use F(03B2-1)(x) to denote a fractional Brownian motion of order Q - I, I.e. the
continuous mean zero Gaussian process with covariance

E = 
. (I . l l)

Of course, we can take

FQ-1>(~) x B(Q-1) (~)
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Theorem 1.4 Let Lf denote the local time of the symmetric stable process of order ~Q > 1
in RI. .

Then, for any u > 0,

1 (03B2-1)/2 (L~xu - n) 2cu F(03B2-1)(x) (1.12)

as E ~ 0, where denotes weak convergence of processes in C(R) and c is given by
(1.3).

For Brownian motion, i.e. ~i = 2 this is contained in Yor [1983].

Finally, let
(1.13)

Theorem 1.5 Let Lf denote the local time of the symmetric stable process of order (3 > 1
in . Then for any a,

E(p - 1 1 )I 2 - ~ 2c B~o-1)(x) (1.14)

as E -~ 0, where ~ denotes weak convergence of processes in C(~Z), and c is given by
(1.9).

Our basic approach is the method of moments, aided by a simple identity (Lemma 1)
concerning the moments of differences of local times of the form that appear in Theorem
2.

Remark : Let now Xt denote a symmetric Levy process, with characteristic exponent 
defined by

If ~(p) is regularly varying at oo of order ,Q > 1, then the methods of this paper can be
used to show that theorems 2-5, as well as (1.4), will hold if we replace the factor 
by

~03C8(1 ~ )

For some other work on second order limit theorems, see Weinryb- Yor [1988], Biane
[1989] and Adler-Rosen [1990].

It is a pleasure to thank Marc Yor for several helpful comments.
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2 A Simple Identity

L? continues to denote the local time of X, the symmetric stable process in R1 of order
# > I We use p, (z) to denote the transition density of X.

Lemma I

Eo ((L? - (2.I)
= n! / ° ° ° / (pt1 (x) (Y)) fl (PAti (o) Y)) dt1,...

’"~

Remark: We are most interested in the case of y = 0, for which we obtain

Eo ( (L? - 
’ ’~’ / ° ° ° / (2°2)

’"~

Pf: We first rewrite (2. I) as

Eo ((L? - 

= n! Eo ( / ... / # (dLQ - dL§, )= n! E0(...03A0(dLxti-dLyti))

ttn-2 ttn-1 dLytn dLxtn-1 -dLytn-1)} (dLxti - dLyti ))= n! E0(... {ttn-2 (ttn-1 dLxtn - dLytn) (dLxtn-1 - dLytn-1)} 03A0 (dLxti - dLyti))

= n! E0 ( ... (ttn-2 Atn-1dLxtn-1 - Btn-1dLvtn-2 (dLxti - dLyti)) (2.3)
;_~~ ~ - 

where

= Ex ( / o t-tn-i dLxtn - 
# / 

t 
~ ~ y))dtn

tn-i

and

( ~ ~ )Bln-I " EY £ dLxtn - dLytn

= / 
t 

p0394tn (z - y) - p0394tn (0)dtn
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Hence (2.3) can be written as

~.((~-~)")

= (/ ~-"’’-’ ~ ’~ /

= n!E0 (... {ttn-3 (fttn-2Atn-2(DLxtn-1 + dLytn-1)) (DLxtn-2 - dLytn-2)}

(dLxti - dLyti) )

= n! E0( (ttn-3Ctn-2dLxtn-2 - Dtn-2dLytn-2) (dLxti - dLyti) (2.4)
"~ ~ ’~ /

where

= / 
= ttn-2 (ttn-1 P0394tn (0) - P0394tn (x - y)dtn) (p0394tn-1 (0) + p0394tn-1 (x - y)) dtn-1

and

Dtn-2= ttn-2 Atn-1 (p0394tn-1 (x - y) + p0394tn-1(0))dtn-1
= Ctn-2

hence

= ~..~ (2.5)
’=~ /

and it is now clear that Lemma 1 follows on iterating this procedure.

3 The Basic Limit Theorem

In this section we illustrate the basic idea of this paper by using Lemma 1 to prove weak
convergence of the following marginal distributions. In sections 4 and 5 we will elaborate
on this idea to complete the proof of Theorem 2.

Proposition 1 For fixed x,t

~~ (L- - L?) =~ 2~-’~) (3.1)
where

c=~(0)-p~))~ (3.2)
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Pf: We first prove

Lemma 2

~p,(0) - = 0 f~) (3.3)

nAcre 0  c  oo is given by (3.2).

Pf of Lemma 2 We recall the scaling

~

so that

= 

= 

- ~)

and our lemma now follows from the fact that is C~ and symmetric with bounded
derivatives so that:

Pf of Proposition 1: We calculate moments using (2.2):

= ~’ /"-/ (3.6)
*=~

Consider first the case n = 2~ + 1. In (3.6) there will be A~ + 1 factors

pA.(0)-pA.(~), t.e. t= 1,3,5,..., 2~+1 1 (3.7)

Since (3.7) is positive, we can bound (3.6) by

[0,t]n... 03A0(psi(0) -(-1)n-ipsi(x))dsi

~ (t02ps(0)ds) (t0ps(0) -ps(x)ds)K+1
= o(~"~~+~) (3.8)

by Lemma 2.
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Hence
L° 2K+1

~g o (a-1)l2t 
t ~ ~ -~ 0 as E -~ 0. (3.9)

Similarly, for n = 2I~, we can replace each factor

pot; (0) + pot; (Ex) (3.10)

by 2pot; (0), since the error term introduced simply adds another factor of the form (3.7),
giving at least l~ + 1 such factors, which can be bounded as. in (3.8).

Hence

lim Eo [ (Lxt - L0t (03B2-1)/2)2K] (3.11)

= lim (2K)! 2K ~(03B2-1)K ... 03A0p0394t2i-1 (0) (p0394t2i (0) - p0394t2i (Ex)) dt2i-1dt2iC~° 6 ~ 
~=1 

Let .

h(t) - pt(0) , ’ t > 0 . (3.12)
fE(t) - pt(0) - pt(Ex), t > 0 (3.13)

Using the commutativity of convolution we can write the integral in (3.11) as

t0 h * f * h * f * ... * h * f(s)ds
t

- / H * FE(s)ds (3.14)
0

where

H(r) = (3.15)
the K-fold convolution of h, and

(3.16)

the K-fold convolution of f E.

V~e now rewrite (3.14) as
t

/ H * FE(s)ds0
t s

- / o ~ / o H(r)FE(s - r)dr ds

= t0(t0 H(r)

F~(s-r)dr)ds
= t0 H(r) (t-r0F(s)ds )dr (3.17)
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From Lemma 2, we see that for each fixed  > 0,

t0f~(s) ~03B2-1ds ~ c|x|03B2-1 (3.18)

Hence for each fixed 03BB > 0

(3.19)

Hence

~0e-03BBtF~(t) ~(03B2-1)Kdt ~ (c|x|03B2-1 (3.20)

This implies in turn that for each fixed r > 0

r0 F(s) (03B2-1)Kds ~ (c |x|03B2-1)K. (3.21)

Using monotonicity, it is clear that the convergence in (3.21) is uniform in
r, ~r~

On the other hand, for any r

t0F~(s)ds ~ ~0 F~(s)ds

~ (~0f~(s)ds)K = (c(~|x|)03B2-1)K. (3.22)

This shows that

t0 H(r) ( t-r0 F(s) (03B2-1)K ds ) dr

= /-"/ 
= (3.23)

Hence

lim E0[(L~xt - L0t ~(03B2-1)/2)2K]
= (2K)! 2KK!(4c|x|03B2-1)KE0((L0t)K)

= (~)~B,[(B~-"~))"] (3.M)

which proves proposition 1.
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4 Convergence of Finite Dimensional Distributions

Here is the next step in our proof of Theorem 2.

Proposition 2

1 (03B2-1) 1 2 (Lxt - L0t) 2cB(03B2-1)L0i(x)

in the sense of finite dimensional distributions (c is defined in (~.,~~~

Proof of Proposition 2: When we consider joint moments, we no longer have a formula as
simple as that of Lemma 1. However, we will prove the following lemma, where we use
the notation

- pr(x) (4.1)
= (4.2)

Lemma 3

n

E° o fl - 

= 03A3 ... 03A0p0394t2j-1 (0)’Yotz; )dt2j-1dt2j
~ ~=1

+p (E(p-1 )(K+1 ) , if n = 2I~ (4.3)

and
= 0 E(’~-1)(K+1) , , if n = 2I~ + 1

These estimates are uniform in 0  t  T for any fixed T  oo. The sum in (,~.~~ is over
all permutations ~r of ~l, ... , , n}.

Remark: Our proof will show that the r.h.s (4.3) is unchanged if we start our process at
Ex instead of 0.

Pf of Lemma 3:

n
= 03A3Eo( 

/ 

fr (dL~x03C0iti - (4.4)
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It suffices to deal with the case x; = I. We write this term as

Eo ( / ... / dLxntn - dL0tn)(dLxn-1tn-1 - dL0tn-1)
03A0 (dL~xiti -dL0ti) )

= Eo / ... / Ctn-2 ii (dL§J" - dL0ti ) (4.5)= Eo (... Gt..-2 03A0 (dLxiti - dL0ti)) (4.5)

where, as in the proof of Lemma I ,

Ctn-2 = ttn-2 ftn-1 dL>liii + ttn-2 gtn-1 dL0tn-1 4.6>
tn-2 tn-2

and

ftn-1 = / 
t 

PAtn PAtn (6Zn-1 )dtn

= / 
t 

- ~xn-1)dtn (4.7)

9tn-1 " / 
t 

PAtn (0) - PAtn (~xn)dtn

= / 
t 

(~xn)dtn . (4.8)
t~_i

We now rewrite (4.5) as

Eo ( / ... / (dL~xn-2tn-2 - )) 03A0(dL~xiti - dL£; )
= E0 (... Dtn-3 03A0 (dL~xiti - dL0ti)) (4. 9)

’"~ 

where

Dtn-3 = ttn-3 (ttn-2 ftn-1p0394tn-1(~xn-1- ~xn-2) + gtn-1p0394tn-1 (xn-2)dtn-1)dLxn-2tn-2

- ttn-3 (ttn-2 ftn-1 p0394tn-1 (~xn-1 ) + gtn-1 p0394tn-1 (0)dtn-1)dL0tn-2
= ttn-3 (ttn-2 (ftn-1 + gtn-1)p0394tn-1(0)dtn-1) (dL§/Jng2 - dL0tn-2)

+ /~ £n-2 dLlrzl + /~ (4° 1°)tn-3 tn-2dLtn-2 + tn-3
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where

A.-2 = 

(4.11)
= /’ (4.12)

tn-2

If we now replace in (4.9) by its expression in (4.10) we obtain three terms. The
first term can be rewritten as

~[ /’"/ ~-n(~r’-~)) (4.13)
’ ’-~ /

where 
,

= / 
= / 

1 

/ 
1 

(4.14)
tn-2 

It is easy to see how the main term in Lemma 3 will be generated on iterating this
argument.

As for the other terms in (4.10), and their analogues which are obtained in iteration,
we note that / and g [(4.11), (4.12)] each contain two factors of the form Ap, and in
general we can check that all terms generated by our iteration aside from the terms in
(4.3) will contain at least 7~+1 factors of the form Ap, if n = 2j~ or 2~ + 1. We already
know that such factors give rise to the uniform estimate

~ 

This completes the proof of Lemma 3.

We now continue with the proof of Proposition 2. Consider first a fixed t: by Lemma
3 we have

E0 [03A0 (Lxit - L0t (03B2-1)(1 2))] ~ 0 (4.15)

while

lim E0 [03A0(L~xi-L0t ~(03B2-1)(1 2))]lim E0 [03A0(Lxi - L0i (03B2-1)(1 2))]
=  (4.16)

From Lemma 1 we see that

(4.17)
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Hence, as in Section 3, we find that

lim E0[03A0(Lxit-L0t ~(03B2-11 2 )]
= (~-.,~) 

= E (4.18)
pairings j=l ~ 

where the sum is over all pairings of the integers {1,..., 27~} into ~ pairs (I,, 2,),
z=l,.~~

However, this says exactly that

lim E0 03A0 B Lxit - L0x (03B2-1)1 2 )]
=(4c)KE0(03A0B(03B2-1)L0i(xi)) (4.19)

This shows Theorem 5 for fixed . When we allow t to depend on z in the l.h.s. of (4.19),
it is best to study increments of L0t in t2014and use the additivity

(4.20)

To illustrate, let us compute the e ~ 0 limit of

E0 (03A0 (Lxis - L0s) 03A0 (Lyjt - L0t) o 03B8s)
= 03A3E0(... 03A0(L~yjt-L0t)o03B8s03A0(dL~x03C0isi-dL0si))

1[’ Bo~...$..~ ~~ ’=~ /

= E ~0 [ / - - - / [~.. (~,J ~;~ - ~o (~J ~,]
~ 

(4.21)

where

~~)
j=i

Exactly as in the proof of Lemma 3 we find that

= E ~0 [ / - - - / 6 * ~=~ /
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- 03A3 E0 ( ... 03A0 (dLyjtj - dL°
11’ 9=1

- ... J ~ )dt2,i-idtZ,i
?=1

+0 if m = 2.~, (ta = 0) (4.23)

and
= 0 E~’°-11t~+1~~ if m = 2~ + 1.

Changing variables, the sum in the r.h.s. of (4.23) can be written as
c

03A3 ... J 03A0 p0394t2j-1(0)03B30394t2j(y2j-1, y2j)dt (4.24)
~ ~=1

where now to = -(s - r) so that

s - r + t1 (4.25)
If we temporarily replace Ex03C0n ( . ) in (4.21 ) by Eo ( . ) we can use (4.23) and the analogue
of Lemma 3 to obtain a main contribution to (4.21):

K

I: ... J 03A0p0394s2j-1 (0)03B30394s2j(x03C02j-1, ~x03C02j)
~ J=1 .

(03A3 ... J 03A0p0394t2j-1(0)03B30394t2i(y2i-1, ~y2i)dt) ds
~ ,i-_1

if n = 2I~, m = 2.~, (to = -(s - sn)) (4.26)
As before, if we divide by and take the limit we obtain

... f pal (O)ppaz (0) ... ppa" (0) ... (4.27)

__ ~(2~)m n 1-T ~ xz~) ~ .

11’ ,ir al=11 i=1

We can check that all other terms, including those which arise by replacing E~x03C0n (.) by
Eo(~) go to zero in the limit. (See the remark following Lemma 3.) Finally, we check that

0 8a
- n!m! ... J pal (0) p0394s2 (0) ... ppan (0) pt1+s-sn (0)

p0394t2 (U) ... pptm (0)dsdt (4.28)
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which implies that (4.2’l) equals
n m

(4~)m+nE~ ~ $L~ 1~(x~) ~ - (4.29)( i_1 ,1_1 a+t a ) )
which proves our proposition for moments such as (4.21). The general case is analogous,
completing the proof of proposition 2.

5 Tightness; Proof of Theorem 1 and 2

We have for s  t

Eo j _ Lys -L0s) zn
 c E LEx - L~yt) Zn
~ c E0(L~xt - L~yt)2n
+ c Eo ( Lt~ - L° - L° 2n (5.1)

By Lemmas ~1 and 2, we have

E0 (Lxt - L~yt)2n~ c(t0ps(0)ds)n(~0ps(0)-ps(~(x-y))ds)n

 c E~p - 1~n (5.2)
while

. EO ~ ‘Ltv ( - LOl l - LO 2n
- Eo [ (L~yt-s - o ea 

2n

_ Eo Ex. a 
_ (5.3)

and for any z, using Lemmas 1 and 2 again

Ez( L~yt-s - L0i-s)2n

= E0(L~y-zt-2 - L-zt-s)
2n

= ... (pr1 (~y - z) + pr1 (-z)) 03A0 (p0394ri (0) - (-1)n-ip0394ri(y))dri
~ c(~0pr(0)-pr(~y))

n

(t-s0pr(0)dr)n
~ c ~(03B2-1)n|t-s|n(1-1/03B2) (5.4)

Putting this all together, we have

E0[(L~xt
- L0t) - (L~ys - L0s)]2n ~(03B2-1)/2

 c Ix - ~- It - (5.5)’ 

. 

.
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which gives tightness.

Theorem 2 now follows from proposition 2 and tightness.

We now obtain Theorem I, in the form (1.4), from Theorem 2 and the continuous
mapping theorem, since w(z, t) - J f(z)w(z, t)dx is a continuous mapping from C(R+ X
R) - C(R+ ) , and ,

/ L§" f(Z)dZ # / L§’ fe(Z)dZ
= (5.6)

while the process

/ 
has the same law as 

(0393(03B2-1)(x, Y)f(")f(Y)d"dY) 
2 

wLi

6 Proof of Theorem 3

We have

E0(03A0(L~xi03B6 - L003B6)) = ~0 e-sE0(03A0 (Lxis - L0s)) ds. (6.1)

If we return to the calculations of Lemma 4, we obtain a main term if n = 2K :

03A3~ e-s ... fl (x03C02j-1,x03C02j) dtds
~ o ;_~~

= £ / O / O ° ° ° / O 03A0 e (0)e -0394t2j 03B30394t2j (6Zw2;-1 > 6Zw2; )
~ 0 ti tn ;~~

= 03A3(u1(0))K 03A0 ~0e-s03B3s(~x03C02j-1,~x03C02j )ds (6.2)
~ ;_~ o

as in (3.9)

1 ~03B2-1 ~0 e-s03B3s(x, ~y)ds ~ 2c0393(03B2-1)(x, y) (6.3)
while

~0 e-s03B3s(x, ~y)ds  c~03B2-1. (6.4)

The other terms from Lemma 3 thus contribute

O (e~’~~~~~+~~) , n = 2k, 2k + 1.
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Hence we see that

E0 [03A0 (Lxi03B6 - L003B6 (03B2-1)1 2)]

~ 0 if n=2K+1
and

K

- ’ ~ ~ r(’~-1)(xlj, x2j) if n = 2K. (s.~)
pairings j=1
(1~,2~)

while on the other hand

n

E ~ E(03A0B(03B2-1)03B6(xi))
_ e_sE 03A0 B(a_1)(xi)= ~0 e-sE(03A0B(03B2-1)s(xi))
= 0 if n = 2K + 1

and

- ~ s K ~ ~ K r (~_1) (xlj,x2j)
° 

pairings j=1
(lj,2j)

K

- K~ ~ j~ xZj) if n = 2K (6.6)
pairin6 j-1

. (lj,2j)

Tightness follows as before.

?’ Proof of Theorems 4 and 5

We will need the following joint convergence:

Proposition 3 If Lt denotes the local time for the symmetric stable process in ?Z1 of
order ~i > 1, then

Lo. 
1 

Lex _ LO~ t~ E(~-1)’~ 1 t t
~ L°; (7.1)

as E -> 0, in the sense of weak convergence of processes in

C (R+ x ?Z, ?Z2~ .

Proof of Theorem 4: This follows as in the proof of Yor’s result for Brownian motion
~1983~ from the continuous mapping theorem for weak convergence and the fact that for
each fixed u we have = Tu) =1.
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Proof of Proposition 3: We consider the analogue of Lemma 3 for

E0((L0i)t03A0(L~xit - L0t)) (7.2)

Running through the proof of that lemma, we at first find a sum over permutations 7r of
{1,2,..., n + .~~. However, many of these permutations will give error terms which are

0 E~’°-1)~K+1)) , n = ZK or 2K + 1.

Consider for definiteness n = 2K. Let us use st, 1 ~ i _ .~ for the time variable of

corresponding to the l factors (L°)~, and t; j = 1, ... , 2K for the time variables
corresponding to the factors where the permutation ~r of { 1, ... , n~ is naturally
induced from ~r by requiring t1 ~ t2  ~ ~ ~  tn. We can check that unless our permutation
7T is such that for each i we have

t2j  Si  t2j+1 (7.3)
for some j = j (i) = 0,1, ... , K, then we obtain an extra Op factor, giving rise to a con-
tribution which is 0 E~p-1)~K+1) . On the other hand, as seen in the proof of Proposition
2, each permutation ~r inducing x and satisfying the above conditions (7.3) gives rise to
the analogue of (4.18):

(2c)K 03A0 0393(03B2-1 )(x03C02j-1, x03C02j)1 (l + K)! E0((L0t)l+K) . (7.4)

There are permutations 1r satisfying the above conditions (7.3) and inducing ~r,

since there are l! ways to order the I letters si, 1  z  ~ and ( ~ ) ways to partition
an ordered sequence of l objects into K + 1 ordered groups.

Hence the total is

03A3(2c)K03A00393(03B2-1)(x03C02j-1 ,x03C02j)1 K! E0 ((L0t)l+K) (7.5)

and the proof is finished as in the proof of Lemma 3-see especially (4.18), (4.19).
The proof of proposition 3 now follows in the same way that Theorem 2 followed from

Lemma 3.

Proof of Theorem 5: This will follow, in analogy with the proof of theorem 4, from Lemma
5.7, p. 11 of Revuz and Yor [1990] and the fact that 

(Xt; 1 ~(03B2-1)1 2 (L~xt - L0t)
~ (Xt ; 

as f ~ 0 in the sense of weak convergence of processes in D(R+) x C(R+ x R, R), and
this follows from moment considerations analogous to the proof of proposition 3. More
precisely, since Xt itself doesn’t have moments of all order, we look at 03C6(Xt) where 03C6 is
an invertable transformation from 7~ to [-1,1].
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