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ASYMPTOTIC ANALYSIS OF GAUSSIAN INTEGRALS. I. 

ISOLATED MINIMUM POINTS 


BY 


RICHARD S. ELLIS' AND JAY S. R O S E N ~  


ABSTRACT.This paper derives the asymptotic expansions of a wide class of Gaussian 
function space integrals under the assumption that the minimum points of the action 
are isolated. Degenerate as well as nondegenerate minimum points are allowed. This 
paper also derives limit theorems for related probability measures which correspond 
roughly to the law of large numbers and the central limit theorem. In the degenerate 
case, the limits are non-Gaussian. 

I. Introduction. Function space integrals are useful in many areas of mathematics 
and physics. Physical problems often give rise to Gaussian function space integrals 
depending on a parameter and the asymptotics with respect to the parameter yield 
important information about the original problem. This paper is the first in a series 
of papers on the asymptotic expansions of a wide class of Gaussian function space 
integrals and on limit theorems for related probability measures. This paper treats 
the case where the minimum points of the action are isolated. Previous work on this 
case [Schilder, Pincus] has assumed a nondegeneracy condition which assures that 
one never strays too far from the realm of Gaussian measures. Our results cover 
both the nondegenerate case and the degenerate case, the analysis of the latter being 
much more subtle. In the degenerate case, the leading asymptotic behavior is 
non-Gaussian. The second paper in this series treats the case where the minimum 
points of the action form a smooth manifold. T h s  case plays an important role in 
recent physics [Coleman, Wiegel]. Subsequent papers will treat applications. The 
results in the present paper were inspired by our work on a model in statistical 
mechanics [Ellis-Rosen (l), (2)]. As background, we cite the important papers of 
[Varadhan] and [Donsker-Varadhan]. 

This paper and the sequel consider Gaussian integrals on a real separable Hilbert 
space. While certain Banach spaces are important in applications, the Hilbert space 
setting leads to simplifications in the statements and proofs of the theorems. By 
using the results of [Kallianpur-Oodaira], it is not hard to generalize our results to 
abstract Wiener spaces. 
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Let PA be a mean zero Gaussian probability measure with covariance operator A 
on a real separable Hilbert space X. The inner product and norm of X are denoted 
by (-,-) and 1 1 - 1 1 ,  respectively. Let + and F be real-valued Cm-FrCchet differentia- 
ble functionals on X which satisfy the bounds (2.l)(a)-(b). We study the asymp- 
totics of 

as n + oo. Here and below, all integrations extend over X unless otherwise noted. 
Let f and g be smooth, real-valued functions on R such that g(x) + oo sufficiently 

fast as x + oo. Then Laplace's method tells us that the asymptotics of 
jRf(x)exp(-ng(x)) dx are determined by the behavior of g near its minimum points 
[Erdelyi, $2.41. Formally, Jnin (1.1) can be written as 

where G(Y) := F(Y) + (A-'Y, Y)/2. G is called the (Euclidean) action. By anal- 
ogy with the situation on R, we expect the asymptotics of J,, to be determined by the 
behavior of G near its minimum points. The expressions in (1.2) are purely formal 
(unless dim X < oo) since the symbol dY is supposed to represent the nonexistent 
translation invacant measure on X. Also, (A-'Y, Y)/2 = (A- ' /~Y,  A-'l2Y)/2 is 
defined only for Y E ~ D ( A - ' / ~ )which in general is only a dense subset of X. 

We define G* := inf G on X and assume for now that G has a unique minimum 
point Y*. Thus, G(Y*) = G*. We necessady have 

(1.3) G'(Y*) = 0, G"(Y*) o on X. 
Here, Gf(Y*) and G"(Y*) are respectively the element of X and the linear operator 
on X defined by the first and second FrCchet derivatives of G at Y*. We set 
X := ker(GU(Y*)). Because of the compactness of A, we have in general dim X < oo 
(see after (3.8) in 8111). We say that Y* is nondegenerate if X =  (01, simply 
degenerate if dim X = 1, and multidegenerate if dim X > 1. This paper treats the 
first two cases in detail. As we point out below in Remark 2.4(c), the multidegener- 
ate case can be treated exactly like the simply degenerate case provided an extra 
integrability condition is satisfied. However, if the condition fails, then our methods 
do not apply. 

Theorem 2.1 states the asymptotic expansion of exp(nG*)Jn in the nondegenerate 
case. We find 

where the (5)are functionals, explicitly computable in terms of A and the FrCchet 
derivatives of + and F at Y*. Here and below, an expression such as (1.4) means that 
for any i E {O,1, 2,. . . ) 

1 i \ 
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The leading order term in (1.4) is To := A-"2J,(~*), where A is a specific determi- 
nant defined in Theorem 2.1. In the special case of Wiener measure, Theorem 2.1 
was proved by [Schilder]. Theorem 2.3 states the asymptotic expansion in the simply 
degenerate case. We find 

Here k is an even integer exceeding 2 wluch measures the extent of the degeneracy of 
G at Y*; k is called the type of Y*. The definition of k is a nontrivial matter 
involving a nonlinear change of coordinates in a neighborhood of Y*. We consider 
the definition of type to be one of the main contributions of this paper. In (1.5), the 
{T,,,) are functionals, explicitly computable in terms of A and the Frechet deriva- 
tives of J, and F at Y*. The leading order term in (1.5) is n ' /2p ' /k~b- ' /2J , (~*) ,  
where C is an explicit constant and A a specific determinant defined in Theorem 2.3. 

Our other results are limit theorems for probability measures related to Jn. We 
define the probability measures 

where Zn is the normalization constant 

Let Y, be an Xvalued random variable with distribution Q,. The scaling in the 
definition of Q, has been chosen in order to suggest the analogy between the 
asymptotic behavior of {Y,) and the law of large numbers and the central limit 
theorem. If F = 0, then the analogy is exact, for in this case Yn is distributed like the 
sum of n i.i.d. random variables, each distributed by PA.It is easy to see that 

'2 9 
(1.8) (a) Yn/n+'o, (b) y n / F = P A .  

'2 
Here, 8, denotes the point mass at Y and + denotes convergence in distribution. 

For general F, the asymptotic behavior of {Y,) is much more complicated. Suppose 
for simplicity (and only in this paragraph) that Y* = 0 is the unique minimum point 
of G. Then (1.8)(a) stays valid (Theorem 2.5). We prove in Theorem 2.6 that if 
Y* = 0 is nondegenerate, then 

where P, is an explicitly determined Gaussian measure. We prove in Theorem 2.7 
that if Y* = 0 is simply degenerate of type k, then there exists a non-Gaussian 
probability measure { on X, concentrated on the one-dimensional subspace 
X := ker(GU(Y*)), such that 
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We may think of (1.10) as a breakdown of the central limit theorem (since k 2 4) 
due to high correlations in Y,along the degenerate subspace X. In contrast to the 
F = 0 case, for general F, Y,is not distributed like the sum of n Xvalued random 
variables. However, we showed in [Ellis-Rosen (l)] the close connection between Y,, 
and the sum of n dependent random variables on R for a special choice of F and PA 
in (1.6). T h s  sum is an important quantity in a model in statistical mechanics. We 
used the analogues of (1.9)-(1.10) to deduce the asymptotic behavior of this sum and 
thus to obtain useful information about the model. For example, (1.10) is related to 
a phase transition. 

In $11 of this paper we state our main theorems. $111 derives a number of facts 
needed for the proofs of the theorems. $IV proves the asymptotic expansion (1.4) 
(Theorem 2.1) and the limit theorem (1.9) (Theorem 2.6) in the nondegenerate case. 
In addition Theorem 4.6 extends the limit theorems (l.E)(a) and (1.9) to the case 
where G has nonunique minimum points, all of which are nondegenerate. (By 
Theorem 3.2, nondegenerate minimum points must be isolated.) $V proves the 
asymptotic expansion (1.5) (Theorem 2.3) and the limit theorem (1.10) (Theorem 2.7) 
in the simply degenerate case. In addition, Theorem 5.5 extends the limit theorems 
(l.E)(a) and (1.10) to the case where G has nonunique isolated minimum points, of 
which some are simply degenerate and the rest nondegenerate. 

11. Statement of results. Since the support of PA equals the closure of the range of 
A [Rajput], we can assume without loss of generality that A > 0. Throughout this 
paper we assume that J, and F are real-valued C" FrCchet differentiable functionals 
on X and that there exist constants b, > 0, b, a 0, 0 G b3 < 1/(2ll All), b, 2 0 such 
that 

(2.1) (a) I J , ( Y ) ) ~ b , e x p ( b 2 1 1 ~ 1 1 2 ) ,  (b) F(Y)>-b311Y112-b, 

for Y E X. These bounds are sufficient to assure that J,, exists. Our theorems go 
through if (2.l)(b) is replaced by certain weaker lower bounds whch arise naturally 
in applications [Simon, $181. 

Throughout this section we assume that G has a unique minimum point Y*. Our 
first two results, Theorems 2.1 and 2.3, state the asymptotic expansion of exp(nG*)J,, 
in the case that Y* is nondegenerate and the case that Y* is simply degenerate, 
respectively. In Remark 2.4(c) we briefly discuss the multidegenerate case. If G has 
nonunique, isolated minimum points which are all either nondegenerate or simply 
degenerate, then the asymptotic expansion is obtained by adding the contributions 
made by each minimum point. The contribution of a minimum point is given by 
(2.4) if it is nondegenerate and by (2.20) if it is simply degenerate. Since isolated 
minimum points must be finite in number (Lemma 3.1), this procedure is well 
defined. By Theorem 3.2 all nondegenerate minimum points are isolated. 

Before stating Theorem 2.1, we give the intuition behind it. Recall that Y* is 
nondegenerate if X := ker(GU(Y*))= (0). Given such a Y*, we can write for ( I  Y I I  
small 

(2.2) G(Y* + Y )  = G(Y*) + ~(G"(Y*)Y, Y)+ error terms. 
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(See (2.3) for an explicit formula for the error terms.) Thus, the important term in 
the exponent of (1.2) is +(GU(Y*)Y, Y). Since GU(Y*) is invertible (a consequence of 
the nondegeneracy), this term gives rise to a Gaussian measure with covariance 
operator [G"(Y*)]-I. The asymptotics of exp(nG*)J, are derived by expanding 
around this measure. It is not hard to show that the error terms in (2.2) are given by 
the functional 

F3enters the asymptotic expansion in Theorem 2.1 below. 

THEOREM2.1. Suppose that G has a unique minimum point Y* and that Y* is 
nondegenerate. Then B := [GU(Y*)]-' exists and is the covariance operator of a mean 
zero Gaussian measure PBon X ,  and exp(nG*)J, has the asymptotic expansion (see 
the explanation below) 

In (2.4), A := det(I + AFU(Y*)),A is well defined and A > 0. The leading term in 
(2.4) equals A-'/2+(Y*). 

Explanation. Because of the smoothness of + and F, the integrand on the 
right-hand side of (2.4) has for each Y E X an asymptotic expansion of the form 

where the {a,(Y)) are functionals. Then (2.4) means that exp(nG*)Jn has the 
asymptotic expansion 

For j odd, aj(Y) turns out to be an odd function of Y. Since P, is mean zero, the 
expansion (2.4) has the form (1.4); i.e., only integral powers of n-' appear. 

REMARK2.2. (a) We give the first two terms in (2.4) if + - 1: 

where dJ := j DJF(Y*)YjdP,(Y). For details, see the proof of Theorem 2.1. 
(b) In (2.4), we multiply Jnby exp(nG*) in order to cancel the contribution of 

G(Y*) = G* when (2.2) is substituted into (1.2). This also applies to the simply 
degenerate case. 

We now discuss the asymptotic expansion in the simply degenerate case. Recall 
that Y* is simply degenerate if dim X = 1. Given such a Y*, the previous analysis 
completely breaks down since GU(Y*) is no longer invertible and we can no longer 
expand around a Gaussian measure. Let 7 denote the orthogonal projection onto XI 
and pick U E X a unit vector. (One easily checks that all of our results are 
independent of the sign of U.) We write Y E X in the form 

(2.6) y = z u + x € X @ X L ,  
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where z := (Y, U )  and X := TY. Following (2.2), we examine G(Y* + Y) for I I  Y I I  
small. Writing Y as in (2.6), we find for some m > 2 

+ (cross terms in z ,  X )  + (error term in z ,  X )  . 
The cross terms are all terms which are of order O(zJ I I  X 11) forj E {1,2,. . . ,m - 1) 
while the error terms are all terms which are of order o(zm) or o(H XI1 2). Unfor-
tunately, when inserted into (1.2), the cross terms (2.7) contribute to the leading 
asymptotics of J,,. We introduce a new way of writing Y which eliminates these cross 
terms altogether. 

We modify (2.6) by writing Y in the form 

(2.8) Y = z U + @ ( z U ) + X ,  
where z := (Y, U )  and X E X L  . For each V E X with I I  V ( 1  sufficiently small (in 
particular, for V := zU, z real and sufficiently small) @(V)is an element of X to be 
defined explicitly in (2.11) below. The map @: V - @(V) is C" and satisfies 
@(O) = 0. These properties imply that I l  @(zU)II = O(z) as 1 z 1 - 0. Hence, we find 
that for I I  Y ( I  small, 

The idea is to pick @(zU)in order to eliminate the cross terms; i.e., to make 

(2.10) (G'(Y* + z U  + @(zU)) ,  X )  = 0 for all X E XI . 
Since Y* is simply degenerate, the operator TG"(Y*)T is invertible on XLwith 

inverse operator denoted by B,  . By the implicit function theorem, the relation 

(2.11) Q, = -B,  TF;(V + @) 

defines a unique C" X L  -valued function @(V) for all V E X of sufficiently small 
norm. The functional F, in (2.1 1) was defined in (2.3). In Lemma 5.2, we prove that 
with this @ (2.10) holds. @(zU) can be computed to any order in z by a straightfor- 
ward iteration. 

We now turn to the leading order behavior in z of G(Y* + Y) in (2.9). Suppose 
that for small z we can write 

where A = A(Y*) is nonzero and k = k(Y*) is a positive integer. We call k the type 
and A the strength of Y*. (If there exists no integer k such that the expansion (2.12) is 
valid for small z, then we define k(Y*) = co and X(Y*) = 0.) We have explicitly 

(2.13) k = min{j: j E {1,2,...) , djG(Y* + z U +  @(zU)) /dzjJZ=,  # 01 ,  
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Since Y* is an isolated, simply degenerate minimum point, we must have A > 0, k 
even, and one can show k 2 4 (Lemma 4.3). Since k is even, the definitions of type 
and strength are independent of the sign of U. 

From (2.9), (2.10), and (2.12), we finally have the correct analogue of (2.2) in the 
simply degenerate case: 

G(Y*+ Y)  = G(Y* + z u  + @ ( z u )  + X) 

(2.15) 	 = G(Y*) + Azk + 3(Gu(Y*)X, X)+  (error terms in z, X )  

= G(Y*) + Azk + ;(7G1'(Y*)7X, X) + (error terms in z, X), 

where the error terms are of order 0(zkt1)  and o(I1 X 1 1  2). (See (2.18) for an explicit 
formula for the error terms.) By (2.15), we see that G approximately decouples along 
the subspaces X and XL. This decoupling gives rise in (1.2) to a non-Gaussian 
measure exp(-Azk) dz in the degenerate subspace X and a Gaussian measure with 
covariance operator (7GU(Y*)r)-' in the nondegenerate subspace XL. The asymp- 
totics of exp(nG*)J, are obtained by expanding around these two measures in the 
respective subspaces. 

We need several definitions in order to simplify the statement of Theorem 2.3. For 
z real and sufficiently small, we define 

(2.16) W(z) := ZU+ @(zU) .  


Since @(zU) is well defined and smooth for all real, sufficiently small z, W(z) shares 

these properties. For W E X and X E X' ,we define the functional 

$(w, X)  := F(Y* + w + X) - F(Y* + W)
(2.17) 

-(F'(Y* + w),  x)- ;(F"(Y*)X, x). 
This functional enters the expression for the error terms in z, X which appear in the 
expansion (2.15). These error terms are given by 

(By (2.12) the first three terms of (2.18) are O(zkt'); by (5.23) P3(w(z), X) = 
o(ll XI1 2, as I z I + I I  XI1 + 0.) The functional F3 is the analogue in the simply 
degenerate case of the functional F3 defined in (2.3). Finally, for z real and 
sufficiently small and X E XL,we define 

Q,(z, X)  := #(Y* + W(z) + X )  

THEOREM2.3. Suppose that G has a unique minimum point Y* and that Y* is simply 
degenerate. Then TG"(Y*)T is invertible on XL with inverse operator denoted by B, . 
B, is the covariance operator of a mean zero Gaussian measure PBLon XL. Suppose 
further that Y* has type k < oo and strength A. Then exp(nG*)J, has the asymptotic 
expansion (see the explanation below) 

(2.20) 
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In (2.20), A := det(I + TPAPTF"(Y*)T), where p is the bounded operator on X 
defined by pY := Y - [(A U, Y)/(A U, U)]U; A is well defined and A > 0. The 
leading term in (2.20) is 

Explanation. The smoothness of + and F and the fact that W(z) is well defined 
and smooth for real sufficiently small z imply that for each z E R, X E XL, the 
integrand on the right-hand side of (2.20) has an asymptotic expansion of the form 

n 2 ' / * [ 2 n ( ~ U ,  ~ ) A ] - ~ / ~ ~ ~ ( z / n l / * ,  - n'/2-'/k~ / b )  2 6,(z, x ) n - j l k ,  
j a o  

where the {6,(z, X))  are functionals. Then (2.20) means that exp(nG*)Jn has the 
asymptotic expansion 

a sn  + a. 

For j odd, cZ,(z, X)  turns out to be an odd function of z or X. Since e-"'; is an even 
density and PELis mean zero, (2.20) has the form (1.5); i.e., only integral powers of 
n-2/k appear. 

REMARK2.4. (a) We give the first two terms in (2.20) if + G 1 and k = 4. Even in 
this, the simplest simply degenerate case, the result is much more complicated than 
in the nondegenerate case (see Remark 2.2(a)). We find that 

The element Cp2 E XLis defined by the expansion Cp(zU) = Cp2z2+ 0(z3) .  We find 
Cp2 := -B ,  D2F'(Y*)U2. The numbers {G,) are defined by 

Since k = 4, we have A = G4 > 0. We find 

but G, and G6 are in general too complicated to write out here. Our formula for G4 
also appears in [Schulman, 915, Notes], where an analogous problem involving the 
asymptotics of Feynman path integrals is considered. 

(b) The operator TpApr in the definition of 6 inverts 7A-l~ on XL. See Lemma 
5.2. 



455 ASYMPTOTIC ANALYSIS OF GAUSSIAN INTEGRALS. I 

(c) We compare the simply degenerate and the multidegenerate cases. In the 
former case, since X > 0 and k 2 4 is even, we conclude that lzJexp(-Xzk) dz < oo 
for all j E (0, 1,2,. ..). Hence, in (2.21) we may expand around thls measure in the 
degenerate direction. Consider now the multidegenerate case. Suppose that 
d := dim X > 1 and that {U,,. . . ,Ud) is an orthonormal basis of X. Given 
z := (z, ,...,zd) E R ~ ,we write z . U for z,U, + . . .  +zdUd. For all sufficiently 
small z E Rd, one can define @(z . U) E XLsuch that for X E XL 

G(Y* + Z .  U +  X +  @ ( z .  u))  
(2.25) 

= G(Y*) + % ( z )  + 3(Gu(Y*)X, X ) +  (error terms in z,  X) ,  

where rk(z)  is a homogeneous polynomial of some even degree k 2 4. The analogue 
of Theorem 2.3 holds if zn  exp(-.rr,(z)) dz < co for all multi-indicesl R d  

n := (n,, .  . .,nd). Instances where this integrability condition fails are readily de- 
termined. For example, in [Ellis-Newman, $61, for X := R2, a G is considered for 
which k = 4, q ( z )  = z:z,2/4. The integral of exp(-r4(z)) over R~ is logarithmically 
divergent. The leading order term in the asymptotic expansion of exp(nG*)J, is 
proportional to log n. 

Finally, we state limit theorems for Xvalued random variables {Y,) with distri- 
butions {Q,) in (1.6). These theorems will be generalized in §§IV and V to cover the 
case of nonunique, isolated minimum points. In these theorems, C ( X )  denotes the 
set of all bounded, continuous, real-valued functions on X .  

THEOREM2.5. Suppose that G has a unique minimum point Y*. Then for all 
functions q5 E C(X),  

This result follows from [Donsker-Varadhan, Theorem 6.21 and [Varadhan, §3]. 
The continuity of F suffices. 

THEOREM2.6. Suppose that G has a unique minimum point Y* and that Y* is 
nondegenerate. Then for allfunctions O E C ( X )  

where P, is the Gaussian measure defined in Theorem 2.1. In other words, 
'9 

(Y, - n ~ * ) / h-P,. 
Given a probability measure 5 on R and a nonzero element V .'E X ,  tVdenotes the 

probability measure on X defined by 

Clearly, tVis concentrated on the span of V 
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THEOREM2.7. Suppose that G has a unique minimum point Y* and that Y* is simp4 
degenerate of type k < oo and strength A. Then for allfunctions + E C(%) 

bS)
where U E %, / I  U I /  = 1. In other words, (Y,- n ~ * ) / n ' - ' / ~+ where & , A  is the 
probability measure on R with density exp(-Az k)/ JRexp(-Az ) dz. 

When it is interpreted in terms of random variables, the asymptotic expansion of 
Theorem 2.1 makes essential use of the fact that the distribution of (Y, - nY*)/ fi 
is close to P,. We emphasize that in distinct contrast to the nondegenerate limit 
(2.27), the limit (x, in the simply degenerate case is concentrated on the one-dimen-
sional subspace X.The nonstandard scaling nl- l /k in (2.29) (where k 2 4) is needed 
because of high correlations in the degenerate direction U. 

111. Notation and facts needed for proofs. We denote by <8('X) the set of all 
bounded linear operators mapping X to X .  We use the same symbol 1 1 - 1 1  to denote 
the norm on X and the derived operator norm on %(X).F is assumed to be a 
real-valued, Cm-Frechetdifferentiable functional on the real separable Hilbert space 
X .  Given Y,? Y,, ...,E X ,  we denote the j th Frechet derivative of F at Y by 
DF(Y)Y, fo r j  = 1 and by DJF(?)(Y,,. ..,Y,) fo r j  2 2. If Yl = Y2 = . - . = Y,, then 
we write D~F(Y)Y{instead of the latter; if for some m E (1,. ..J - 11, Yl = . . . = 
Ym, Y,,+, = . . - -- Y,, then we write DJF(Y)(Y;", Y,J-"). By the Riesz representa-
tion theorem, there exist an element F ~ Y )E X and an operator F"(Y) E %(X) 
such that 

(3.1) DF(Y)Y, = ( F ' ( Y ) ,Y,), D~F(Y) (Y, ,Y,) = (F"(Y)Y,, Y,). 

Given r > 0, we define s(F, r )  := {Y: Y E  X ,  I I Y - Yll < r) ,  ?(E r )  := 
{ Y : Y E X ,  I I Y - Yll G r ) .  

Let PA be a mean zero Gaussian measure on X with covariance operator A. In 
general, A is a nonnegative, symmetric, trace class operator on X [Gihman-Skoro-
hod, Theorem V.6.11. As already stated, we assume (without loss of generality) that 
A is strictly positive, adenotes the unique, nonnegative, symmetric square root of 
A and A - ' / ~the inverse of a.6 D ( ~ - l / ~ ) ,the domain of A - ' / ~ ,is dense in X and 
is a Hilbert space when equipped with the inner product (Y,, Y2), := 
( A - 1 / 2 ~ l ,A-'l2Y2). We call this Hilbert space XAand write its norm as 11-11 ,. 
Given Y E X,, r > 0, we define 

We define the entropy functional I = I, of PAby the formula 

1 1 ~ 1 1 if Y E  X,,
I (Y)  := 

t o o  if Y E X \ % , ,  
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and the functional G by the formula 

(3.3) G ( Y )  := F(Y) + I(Y). 

If it happens that Y E ~ ( A - I ) ,then G(Y) = F(Y) + +(A-'Y, Y). The functional I 
is discussed in [Freidlin] and in [Wentzell] under the name action functional. G is 
Cm-Frechetdifferentiable on X, with FrCchet derivatives 

(3.4) 

(a) DG(Y)Y, = (F'(Y), Yl)+ (Y, Y,), = (AF'(Y) + Y, Y,),, 

(b) D 2 ~ ( Y ) ( y I ,y2) = (F"(Y)Y,, y2)+(Y,, Y,), = (AF"(Y)Y, + Y,, Y,),, 

(c) DJG(Y)(yI , . ..,YJ)= D~F(Y)(Y,,. ..,YJ)i f j  3. 

Although G is not Frechet differentiable on X ,  if Y E  ~ ( A - I ) ,then we use the 
notation 

(3.5) G'(Y) := A-IY + F'(Y), G"(Y) := A - I  + F"(Y). 

Thus the domain of G ~ Y )is ~ ( A - I ) .  
We define G* := inf{G(Y): Y E X ) .  A point Y* E X, is said to be a minimum 

point of G if G(Y*) = G*. We define 9TL to be the set of all minimum points of G. 
Key facts about minimum points are stated in the next lemma. 

LEMMA3.1. Suppose that F satisfies the bound (2.l)(b). Then minimum points of G 
exist. If Y* is a minimum point, then Y* E Gi)(A-'), 

(3.6) G'(Y*) = F'(Y*) + A-'Y* = 0, 

and 

(3.7) 
1

lim - log /e-"'('/fl) ~ P ( Y )= -G(Y*). 
n - w  n 

For any number u E [G*, co) the set {Y: G(Y) G u) is a nonempty, compact subset of 
X. In particular, 9TL is compact. Hence, if the minimum points are all isolated, then 
they are finite in number. 

PROOF.If Y* is a minimum point then, for all Y E X,, DG(Y*)Y = 0, and so by 
(3.4)(a) AF'(Y*) + Y* = 0. Since F1(Y*) E X ,  we see that Y* E 9 ( ~ - ' )and that 
(3.6) holds. The limit (3.7) is proved in [Ellis-Rosen (2), Theorem A.71 as well as in 
[Donsker-Varadhan, Corollary 6.31. We now prove that 9 : =  {Y: G(Y) G u) is a 
nonempty, compact subset of X and that minimum points of G exist. G is lower 
semicontinuous (1.s.c.) since G := F + I with F continuous and I 1.s.c. (Xana -
logue of [Ellis-Rosen (2), Lemma 4.4(a)]). Thus, 9 is closed. For Y E 9,(2.l)(b) 
implies I(Y) G u + b, + b, I I  Y I I  2. Thus, for Y E 9 ,  I(Y) < 6-'(u + b,), where 
S := 1 - 2b31 1  All > 0. Hence 9is compact since for any L real {Y: I(Y) < L) is 
compact [Ellis-Rosen, Lemma A.81. Being l.s.c., G achieves its absolute minimum on 
the compact set 9 .  This completes the proof since inf G on 9equals inf G on X. 

If Y* is a minimum point of G, then for all Y E X,, D~G(Y*)Y'2 0. This 
implies by (3.4)(b) 
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We define X := ker(GU(Y*)).We say that Y* is nondegenerate, simply degenerate, or 
multidegenerate according to whether X = (01, dim X = 1, or dim X > 1. Since 
X = {Y: AF"(Y*)Y = -Y}, the compactness of AFU(Y*) implies that in general 
d im%< co. 

We state a useful fact about nondegenerate minimum points. 

THEOREM3.2. If Y* is a nondegenerate minimum point of G, then Y* is an isolated 
minimum point. 

The proof depends on the following lemma, which is used several times in thls 
paper. 

LEMMA3.3. Suppose that Al is a symmetric, strictly positive, compact operator on a 
real separable Hilbert space X I  and that A E % ( X I) has the property that A;' + A > 
0 on 9(A;'). Then there exists a constant v > 0 such that for all Y E X I  

PROOF. Let {p,; j = 1,2,.. . }  be the eigenvalues of K A K .  Since K A K  is 
compact and symmetric, it suffices to prove that 1 + p, > 0 for each j. I f f  E X I ,  
f # 0, satisfies K A K f  = pjf ,  then f E 9(A; ' l2)  and so g := KfE 9(A;'). 
Hence 

Thus, 1 + p, > 0 since A;' + A > 0 on AT'). 
PROOFOF THEOREM3.2. If Y* is the unique minimum point of G, then we are 

done. Otherwise, since A-' is in general unbounded, it is easier to prove first that Y* 
is an isolated minimum point in X,, then that Y* is an isolated minimum point in 
X .  We prove the assertion about X,. By Lemma 3.3 with X I  := X ,  A, := A, 
A := FU(Y*),there exists v > 0 such that for all V E X, 

(3.11) ( (I+ @ F / ( Y * ) ~ ~ ) A - ' / ' V ,A - ' / ~ v ) ~v 1 1  A- ' / 'VII  '. 
By the smoothness of F, there exists v > 0 such that for all Y E $(Y*, r )  

But (3.12) shows that for all V E X, 

(3.13) o 2 c ( r ) v 2= ( ( I  + AFII(Y))V,v), a ~ I I V I I : .  

Hence by [Berger, Theorem 3.2.21 there exists a number r, E (0, r ]  such that Y* is 
the unique minimum point of G in &(Y*, r,). 

We now prove the assertion about X .  Assume, on the contrary, that Y* is not an 
isolated minimum point in X .  Then we may find a sequence {Y:} of minimum 
points such that I I  Y* - Y: I l  + 0 as m -.a.By the smoothness of F, this would 
imply 1 1  F1(Y*) - F1(Y:)II -.0 and thus by (3.6), I I  A-'Y* - A-'Y: 1 1  - 0. But then 
we would have I I  Y* - Y: I l  ,:= (A-'Y* -A-'Y,, Y* - Y:) -.0, which contradicts 
the first part of this proof. 
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IV.Proofs of Theorems 2.1, 2.6, and extensions (nondegenerate case). The plan of 
this section is to prove Theorems 2.1 and 2.6 together with extensiolls of Theorems 
2.5 and 2.6. The extensions cover the case where G has nonunique minimum points 
all of which are nondegenerate. By Lemma 3.1 and Theorem 3.2, these minimum 
points must be finite in number. These extensions are stated and proved as Theorem 
4.6 at the end of the section. 

The proof of Theorem 2.1 depends on three lemmas, Lemmas 4.1-4.3, which are 
stated just below. After stating the lemmas, we prove Theorem 2.1, then prove the 
lemmas. Lemma 4.1 shows that the main contribution to exp(nG*)Jn comes from a 
neighborhood of Y*. Lemma 4.2 is the heart of the proof. It expresses thls 
contribution in a usable form that allows one to complete the analysis. Lemma 4.3 
gives an important bound on certain tail probabilities. We state Lemmas 4.1-4.2 in 
greater generality than is needed to prove Theorem 2.1 since they will also be used to 
prove Theorem 4.6, in which it is assumed that G has nonunique minimum points. 

LEMMA4.1. Let (%, denote the set of minimum points of G. Suppose that \C, and F 
satisfy the bounds (2.l)(a)-(b). Then for any 6 > 0 there exists c = c(6) > 0 such that 

(4.1) en'* = ~ ( e - " ' )\ c , ( Y / ~ ) ~ - ' F ( ~ / ~ ' ' ) ~ P , ( Y )  
"(Y: I Y I P - Y *  28.all Y* E%) 

REMARK4.l(a). The only smoothness required of \C, in (4.1) is that it be continu- 
ous. This form of Lemma 4.1 is used below in the proofs of Theorems 2.6, 2.7, 4.6, 
and 5.5. 

LEMMA4.2. Suppose that Y* is a nondegenerate minimum point of G. Then 

(4.2) A = A(Y*) := det(I + AF"(Y*)) 

is well defined and A > 0. Also, GU(Y*)is invertible on X and 

is the covariance operator of a mean zero Gaussian measure PB on X. Define the 
functional F3 = F3(Y*; .) by (2.3). Then for any 6 > 0 

REMARK 4.2(a). The only smoothness required of in (4.4) is that it be continu- 
ous. This form of Lemma 4.2 is used below in the proofs of Theorems 2.6, 4.6, and 
5.5. 

LEMMA4.3. Let P be any mean zero Gaussian measure on X and let Al be its 
covariance operator. For any b E (0, 1/(211 A, II)), we have j exp(b I I  Y I I  2,  dP(Y) < co. 
For any such b there exists c = c ( b )> 0 such that 

(4.5) p{Y: 1 1  Y 1 1  > a )  < ce-ba2 for all a 2 0. 
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PROOFOF THEOREM2.1. The facts about A,B, PB are proved in Lemma 4.2. We 
prove (2.4) by showing that there exist functionals {q;j = 0,1,. .. ) such that for 
any integer M 2 0 

M 

e"'*Jn = 2 TJ nn-J+ ~ ( n - ( ~ + ' ) )(4.6) as n -,a. 
j=O 

The {I?,) are found by expanding the integrand in (2.4) in powers of Y/ Jil and then 
by integrating term-by-term with respect to dPBover %. Since PB is mean zero, only 
integral powers of n-' survive. 

Since 9L= {Y*), the domain of integration in (4.1) is [S(fi Y*, fi6)Ic. Hence by 
Lemmas 4.1-4.2, for any 6 > 0 

where c = c(6) > 0. We show how to go from (4.7) to (2.4). Let an integer M 2 0 be 
given. Pick S so small that l l  D ~ " + ~ $ ( Y *+ Y)II, I 1  D3F(Y* + Y)II, 
I I  DZMt4~(Y*+ Y)ll are uniformly bounded on S(0,S). By Taylor's theorem [Berger, 
Theorem 2.1.331, we have for all Y E S(0, f i 6 )  

and 

We also note that if l l  Y/ fi / I  < 6, then 

(This shows that the term nF,(Y/ Jil) in (2.4) is an error term.) 
For any real number x we have 

Hence for all Y E S(0, &is), we have 

where cl = cl(6) > 0. The last estimate uses (4.10). We substitute (4.9) into the 
right-hand side of (4.12), then substitute (4.8), (4.12) into (4.7). There exists an 
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integer N = N(M) and for each i E (0,. .., 2 M  + 1) there exist functionals E,(Y) 
such that 

where 

1
(4.15) 1 TM(n)/rconst e-"' + -/ [ l  + I YI N(")]ec8d1Y112~P,(Y)  . 

n(,+') s (o ,J"~)  I 
By reducing 6, if necessary, we conclude by Lemma 4.3 that 

(4.16) TM(n) = O(n-(,+') >. 
In (4.14), E, = +(Y*) and, for i E {1,2,. .. ,2M + 11, Ei is a sum of products 
involving Dj+(Y*)YJ and D'F(Y*)Y' for j E (0,. . . , 2 M  + 1) and 1 E 

(3,. .., 2 M  + 3). If i is odd, then Ei is an odd function of Y. 
We claim that for each i E (0,. .. ,2M + 1) 

for some c, > 0. Since P, is mean zero and Z, is an odd function of Y for odd i, 
( E, dP, = 0 for odd i .  Substituting (4.16)-(4.17) into (4.14), we obtain the expan-
sion (4.6) with 

We prove (4.17). For each i E (0,. .., 2 M  + 11, there exists an integer N,2 0 such 
that I E,(Y) I < const(1 + I 1  Y I I  Nl).Hence (4.17) follows from Lemma 4.3. 

We next prove Lemmas 4.1,4.3 and 4.2. 
PROOFOF LEMMA4.1. Let Cbe any closed subset of X such that C f' = 0.We 

first prove that there exists D > 0 such that 

(4.19) inf{G(Y): Y E  C )  - G* > D. 

Suppose that (4.19) is false. Then there exists a sequence {E;m = 1,2,. .. )  in C 
such that G(%) -+ G* and G ( R )  G G* + 1 for each a.By Lemma 3.1, the set{c)is conditionally compact and so there exists an element Y such that I 1  Y - I 1- 0. Since C is closed, we have Y E C. By [Ellis-Rosen (2), Lemma 4.5(a)] (with X 
written for C[O, I]), G is lower sernicontinuous, and so 

G* = lim G(Y,) G ( Y ) .  
m + m  

Since we must have G(Y) 2 G*, we conclude G(Y) = G* or Y E  a .  Thus Y E  C 
f' a ,  whch is impossible. T h s  contradiction proves (4.19). By [Donsker-Varadhan, 
Theorem 6.21 and [Varadhan, 931, (4.19) implies 

(4.20) Q,{Y: Y/n E C )  = O(e-nD),  

where Q, is the measure defined in (1.6). The limit (3.7) implies that for any E > 0 

(4.21) en^* = o(enE/z (n>) ,  
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where Z(n) is defined in (1.7). The bounds (4.20)-(4.21) imply that 

We pick E E (0, D). (If I J, I were uniformly bounded on X ,  then (4.22) would imply 
(4.1).) By Lemma 3.1, '32 is compact and so there exists R >  0 such that '32 C 

{Y: I I  Y I I  G R/2). For fixed 6 > 0 and any sufficiently large R the set 

(4.23) C,:= {Y:IIY- Y I I2 6 ,  all YE%;  IlYll G R )  

is nonempty and closed. For any such R,  the left-hand side of (4.1) is bounded by 

Below we shall choose a suitable value of R. Since ( J, ( is uniformly bounded on C,, 
(4.22) implies that the first term in (4.24) is bounded by O(exp(-n(D - E))). By 
(2.l)(b) the second term in (4.24) is bounded by 

Since b, E (0,1/(211 All)), we can pick q > 1 and E,  > 0 such that q(b, + b,/n) < 
1/(211 All) - E,  for all n sufficiently large. Let p be the conjugate exponent to q. Then 
by Lemma 4.3, (4.25) is bounded by 

(4.26) 

for some b > 0. This is bounded by O(exp(-n(D - E ) ) )  provided we pick a suffi-
ciently large R. Thus, both terms in (4.24) have been suitably bounded and we 
obtain (4.1). 

PROOFOF LEMMA4.3. The first assertion is proved in [Gihman-Skorohod, p. 35 11. 
The second assertion follows from the first via Chebyshev's inequality. 

PROOFOF LEMMA4.2. We shall derive the facts about A and B from the following 
lemma. This lemma, which will be proved after the proof of Lemma 4.2, is also used 
later in this paper. 

LEMMA4.4. Suppose that A, is a symmetric, strictly positive, trace class operator on 
a real separable Hilbert space X I  and that A is a symmetric operator in a(%,)such 
that A;' + A > 0 on Q(A;'). Then 

A ,  := det(I  + A,A) = d e t ( I +  KAK) 
is well defined and A ,  > 0. Also, B, := (A;' + A)-' exists and is given by 
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B, is the covariance operator of a mean zero Gaussian measure PB,on X Iand 

The facts about A and B follow from Lemma 4.4. Indeed, by definition of 
nondegeneracy, the hypotheses of this lemma are satisfied with X I  := X ,  A, := A, 
and A := FU(Y*).In addition, (4.28) implies that for Y EX 

We need one more fact in order to prove (4.4). This fact follows from [Gihman-
Skorohod, Theorem VII.4.11. 

LEMMA4.5. Let P be any mean zero Gaussian measure on X ,  A, its covariance 
operator, and IAIits entropy functional (see (3.2)). If V E 9(Ai1) ,then P( .  + V) << P 
and 

We are now ready to prove (4.4). In the integral on the left-hand side of (4.4), we 
translate Y - Y + fiY*. By Lemma 3.1, Y* E 9(A-I) so that by Lemma 4.5, the 
left-hand side of (4.4) equals 

In (4.30), we substitute 

(4.31) 

By (3.3) and (3.6), (4.30) equals 

This equals the right-hand side of (4.4) by (4.29). 
PROOFOF LEMMA4.4. In order to prove the statements about A,, we use 

[Gohberg-Krein, Chapter IV.11. A,, and thus AIR, are trace class operators on XI .  
Thus, A ,  is well defined. We now prove A ,  > 0. Writing {p,;j = 1,2,. . .) for the 
eigenvalues of KA\i;iT, we have 

(4.33) A, = d e t ( I +  &A&) = (1 + pi). 
/=  1 

Hence it suffices to prove that 1 + y, > 0 for eachj. This follows from Lemma 3.3. 
We next prove the statements about Bl .  On Gi)(A;'), we have 

(4.34) A;' + A = A - I / ~, ( I + & A & ) A ; , / ~ .  
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By Lemma 3.3, there exists a constant v > 0 such that ( I  + K A ~ )2 v. There 

also exists a constant i > v such that i 2 ( I  + K A & ) .  By [Riesz-Sz.-Nagy, pp. 

265-2661, ( I  + &A&) is invertible. Hence ( A ; '  + A) is invertible and we have 
(4.27). Since (4.27) exhibits B, as a nonnegative, symmetric, trace class operator, B, 
is the covariance operator of a mean zero Gaussian measure P,, on X [Gihman-
Skorohod, Theorem V.6.71. Equation (4.28) follows from [Gihman-Skorohod, Theo-
rem VII.4.4 and Remark, p. 4981 (with their V := A,A). 

We now turn to the probabilistic limit theorems. We first prove Theorem 2.6, then 
state and prove extensions of Theorems 2.5-2.6 to the case where G has nonunique 
minimum points all of whch are degenerate. These extensions are given in Theorem 
4.6. We prove Theorems 2.6 and 4.6 by applying Lemmas 4.1 and 4.2 as modified by 
Remarks 4.l(a) and 4.2(a) respectively. 

PROOFOF THEOREM2.6. We prove that for any + E C ( X )  

We multiply the numerator and denominator of the left-hand side of (4.35) by en'*. 
By Lemma 4.1, the resulting quotient equals 

for any 6 > 0 and c = c(6) > 0. We have by Lemma 4.2 that (4.36) equals 

We want to use the dominated convergence theorem to study the n + co limits of 
the integrals in (4.37). Since 

the smoothness of F implies that given b > 0 there exists 6, E (0, 61 such that if Y 
satisfies I I  Y/ fi I 1  < 6, then, for any n, I nF,(Y/ fi) I G b I I  Y 11 '. We replace 6 in 
(4.36)-(4.37) by 6,. Lemma 4.3 shows that the dominated convergence theorem is 
applicable provided b and thus 6, are sufficiently small. For any fixed Y, (4.38) 
implies that nF,(Y/ fi)+ 0 as n - co; also, X~(,,~,,,(Y)+ 1. We conclude that as 
n - co the quotient in (4.37) equals 

provided 6 = 6, is sufficiently small. This gives (4.35). 
We now assume that G has nonunique minimum points {Yz; a = 1,. . .,L) all of 

which are nondegenerate. Thus we have L E {2,3,. ..}. We extend Theorems 
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2.5-2.6 to cover t h s  case. The following quantities arise in these extensions. For 
eacha E ( 1 ,...,L ) ,  wedefine 

and B(Y,*) := [G"(Y,*)]-I .By Lemma 4.2, the {Fa) are well-defined, each 6, > 0, 
and each B(Y,*) exists and is the covariance operator of a mean zero Gaussian 
measure PB(yz)on X .  

A second type of convergence arises in the extensions of Theorems 2.5-2.6. We 
say that a function +: X - R vanishes at infinity if +(Y,) + 0 for any sequence 
{Y,} such that I I  YmI I  - a. Given probability measures (5,; n = 1,2,. . . ) and 5 on 
X ,  we say that the (5,) tend vaguely to 5,  and write 5,  5 ,  if j+ d t ,  -t j+ d t  for 
all 9 E C ( X ) which vanish at infinity. If { X , )  are Xvalued random variables with 
distributions { t , ) ,  we also write X, 3 5. 

In the next theorem, (4.41) generalizes Theorem 2.5 and (4.42) generalizes Theo- 
rem 2.6. We recall that the {Y,) are Xvalued random variables with distributions 

{en>in (1.6). 

THEOREM4.6. Suppose that G has minimum points {Y:; a = 1 , .  . . ,L }  and that each 
Y* is nondegenerate. Suppose that F satisfies the bound (2.l)(b).  Then for all 

9 E C ( X )  

'D 

i.e., Y,/n -,2;=, baa,:. For each a E (1 , .  . . , L )  and for all 9 E C ( X )  which vanish 

at infinity, 

PROOF. TO prove (4.41), we prove that for any 9 E C ( X )  

as n + a. For 6 > 0 and a E (1 , .  . . ,L ) ,  we write B(a, 6 )  for S ( f i  Y,*, f i 6 ) .  We 
multiply the numerator and denominator of the middle term in (4.43) by exp(nG*). 
By Lemma 4.1 the resulting quotient equals 
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for any 6 > 0 so small that B(a, 6) n Z(P, 6)  = 0 if a # p and c = c(6) > 0. We 
apply Lemma 4.2 to each summand in (4.44). We have for each a E (1,. . .,L }  

where 4 equals + or 1. As in the proof of Theorem 2.6, provided 6 is sufficiently 
small, we may apply the dominated convergence theorem to conclude that as n - co, 
the quotient in (4.44) equals 

This gives (4.43) and thus (4.41). 
We prove (4.42) for a = 1. Define dTa(Y) := e-"F3(y;;Y/Jr;)dPB(y,'j(Y). Proceed-

ing as in the proof of (4.41), we have that the left-hand side of (4.42) equals 

for any sufficiently small 6 > 0 and c = c(6) > 0. Since + vanishes at infinity, the 
dominated convergence theorem shows that after reducing 6 (if necessary) each term 
in the numerator of (4.47) involving a E (2,. ..,L }  tends to zero as n + co. 
Handling the other terms in (4.47) as in the proof of Theorem 2.6, we obtain (4.42). 

V. Proofs of Theorems 2.3, 2.7 and extensions (simply degenerate case). The plan 
of t h s  section is to prove Theorems 2.3 and 2.7 together with extensions of 
Theorems 2.5 and 2.7. The extensions cover the case where G has nonunique isolated 
minimum points of whlch some are simply degenerate and the rest nondegenerate. 
These extensions are stated and proved as Theorem 5.5 at the end of this section. 

The proof of Theorem 2.3 depends on Lemmas 4.1, 4.3, and on three additional 
lemmas, Lemmas 5.1-5.3, which are stated just below. Lemma 5.1 states facts about 
the function @(Y) defined implicitly by (2.11). Lemma 5.2 concerns the operator 
~pAp7which appears in the definition of the determinant A in Theorem 2.3. Lemma 
5.3 is the analogue, in the simply degenerate case, of Lemma 4.2. After stating the 
lemmas, we prove Theorem 2.3, then prove the lemmas. 

Given Y* a simply degenerate minimum point of G, we recall that 7 is the 
orthogonal projection onto X := ker(G"(Y*)), U is a unit vector in X, and p is the 
bounded operator on X defined by 

(5.1) pY := Y - [(AU, Y)/(AU, U)]U. 
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As explained in 511 (see (2.9)-(2.10)), equation (5.4) in the next lemma implies the 
vanishing of the cross terms in G(Y* + Y )  when Y is written in the form (2.8). 

LEMMA5.1. Suppose that Y* is a simply degenerate minimum point of G .  Define 
F, = F,(Y*; .) by (2.3). Then there exists 6> 0 such that the equation 

(5.2) @ ( V )= -B, rF;(V + @ ( V ) )  

has a unique solution @ ( V )  = @(Y*;  V )  for all V E S(O,6).  For all such V ,  @ ( V )  is 
CM,@ ( V )E X L  n q ( A - ' ) ,  and 

(5.3) Il@(v)ll ~ ( l l v1 2 ) as IIV I I - 0 .= 1 
For z real and ( z I < & we also have for all X E X I  

LEMMA5.2. The operator ~ A - ' T ,  with domain X L  r ) q ( A - I ) ,  is invertible on X L  with 
inverse given by A ,  := ~ p A pT.  A ,is the covariance operator of a mean zero Gaussian 
measure PALon X L  . 

Let 6be the number in Lemma 5.1. For the next lemma, we define 

(5.5) w ( z )  = w(Y*;  z )  := z U +  @ ( Y * ;  z u )  


for z real and I z ( < 6. Since by Lemma 5.1 the function z -,@ ( z  U )  is well defined 

and smooth for such z,  W ( z )  shares these properties. For 6 E ( 0 , 6 ) ,  n E {1 ,2 , .  . . ), 

and ( z (<6 n 1 l k ,we define the set S ( 6 ,  n ,  z )  = S(Y*;  6 ,  n ,  z )  by 


This set is well defined and nonempty. Finally, for the same 6 ,  n ,  z and for X E X L  , 
we define Q,(z, X )  = Q,(Y*; z ,  X )  by (2.19). 

LEMMA5.3. Suppose that Y* is an isolated, simply degenerate minimum point of G. 

Then 


(5 .7)  ~ = ~ ( Y * ) : = ~ ~ ~ ( I + ~ ~ A ~ ~ F " ( Y * ) T ) = ~ ~ ~ ( I + A , T F " ( Y * ) T )  

is well defined and d > 0. Also TG"(Y*)r is invertible on X L  with inverse operator 
denoted by B,= B ,  (Y*) .  B ,  is the covariance operator of a mean zero Gaussian 
measure PBI on X I .  Consider the type k = k ( Y * )  and the strength h = A(Y*) defined 
by (2.13)-(2.14). If k < co,then k is an even integer, k 2 4, and h > 0. Let 6 be the 
number in Lemma 5.1. W e  have for all 6 E (0,  63 

REMARK5.3(a). The only smoothness required of # in (5.8) is that it be continu- 
ous. This form of Lemma 5.3 is used below in the proofs of Theorems 2.7 and 5.5. 
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PROOFOF THEOREM2.3. The facts about d ,  B, ,PBi are proved in Lemma 5.3. 
We prove (2.20)by showing that there exist functionals {I',,,; j = 0,1 , . . .} such that 
for any integer M 0 

The { q , , )  are found by expanding the integrand Q , ( Z / ~ ' / ~ ,X /  f i )  in (2.20) in 
powers of ~ / n ' / ~  = and then by integrating term-by-term and X/  f i  ~ / n ( ~ / ~ ) / ~  
with respect to e-A'k dzdPBi over R X XI . Since e-A'k is an even density and PBi is 
mean zero, only integral powers of n-'lk survive. 

We first prove facts about S ( 6 ,  n ,  z )  which are needed below. Let &be the number 
in Lemma 5.1. Pick 6 E ( 0 , 6 ) and ( z I <  Sn ' / k . Since U E X, IIUII = 1 ,  @ ( z ~ / n ' / ~ )  
E XL,X EXL,we see that 

By (5.3) I l  @ ( z ~ / n ' / ~ ) l l= 0((z / n ' l k  1 2 )  = 0 ( S 2 )as 6 + 0. Hence there exists 6 ,  E 
(O,6]such that if 6 E (0,  a , ] ,  then 

(5.11) I 1  ~ ( z / n ' / ~ ) l lG 26,  

and if in addition ( z / n ' I k  (<6 / 2 ,  then 

We start the proof of (2.21). By Lemmas 4.1, 5.3, there exists &> 0 such that for 
any 6 E (0, 61 

Here c = c ( 6 ) > 0,  y := [ 2 a ( A U ,  ~ ) d ] - ' / ~ ,  + X/  f i ) ,qn := #(Y* + ~ ( z / n ' / ~ )  
and p3,, := F 3 ( ~ ( z / n ' / k ) ,X /  f i ) .  We show how to go from (5.14) to (2.20). Let 6 ,  
be the number defined before (5.1 1). Since $ and F a r e  C", we see that ~ ( z / n ' / ~ ) ,  
#(Y* + ~ ( z / n ' / ~ )  and E ^ ; , ( ~ ( z / n ' / ~ ) ,  are+ X/  f i ) ,  G(Y* + ~ ( z / n ' / ~ ) ) ,  X /  f i )  
C" for S E (0, 8 , ] , ( z 1 < 6 n ' l k , and X E S ( 6 ,  n ,  z ) .  Let an integer M 2 0 be given. 
(If M = 0 ,  then the sums in (5.19), (5.20), (5.21) below are absent.) Since W ( 0 )= 0 ,  
there exist elements { y ;i = 1,2,. ..) in X such that 
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For sufficiently small 6, E (0,  611 and for any 6 E (0,a,] ,  ( z (<6n1/" ,  X E 
S(6 ,  n, z ) ,  we claim that there exist multilinear functionals {a,,; i ,  j = 0,1, . . . ) such 
that 

We explain how to derive (5.16). We may pick 6, E (0, S , ]  so small that 
I 1  D ~ ~ + ~ J / ( Y *+ Y)II is uniformly bounded on the set S(O,46,). By (5.1 1)-(5.12), for 
any 6 E (0,  621, S(O,46,) contains the set 

(5.17) ( Y :Y = s ( ~ ( z / n l / ~ )+ X / f i ) ,  1 z I <  S n ' / k ,x E S ( 6 ,  n ,  z ) ,  0 G s < 1 ) .  

Hence by Taylor's theorem and the bound I 1  ~ ( z / n ' / ~ ) l l= ~ ( z / n ' / ~ ) ,the left-hand 
side of (5.16)equals 

Because of (5.15), (5.18) can be put in the form of the right-hand side of (5.16).We 
next expand the other terms in (5.14). By the definition (2.14)(a)of k and by (5.15), 
there exist functionals {g , ; i = 1,2,. . . } such that 

~ [ G ( Y *+ ~ ( z / n ' / ~ ) )G ( Y * )- ~ ( z / n l / ~ ) " ]-

r = l  

To handle the nF3,, term in (5.14), we pick 6, E (0,  621 so small that 
I1 D~M + 4 ~ ( ~ *+ Y)Il is uniformly bounded on S(O,46). Then for 6 E (0,a , ] ,  ( z ( < 
6 n ' / k , X E S(6,  n ,  z ) ,  we have 

as I z / n 1 l k ( + 1 1  fill - 0 .  
Hence there exist multilinear functionals { h j ;i = 1,2,. . . ,j = 2,3,. . . ) such that 
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We derive a bound that will be used below. By (5.21) with M = 0, we have for 

( z I < 6n1/k, X E S(6, n, z), 

By (5.18), we conclude that for such z, X 

T h s  shows that the term n P , ( ~ ( z / n ' / ~ ) ,  Xfi) in (2.15)-(2.16) is an error term. 
We now return to the proof of (2.20). The next step is to substitute (5.16), (5.19), 

(5.21) into (5.14), where 6 E (0, a,]. As in the nondegenerate case, there exists an 
integer N = N(M) and for each m E (0,. . . ,2  M + 1) there exists a functional 
Zm,,(z, X) such that 

where 

We have So,,= $(Y*).For each m E (1,. . . , 2M + 11, Em,,is a sum of products of 
terms involving z and X. As an aid to understanding, we point out one contribution 
to S,,,. Taking the zeroth order contributions from the two exponentials in (5.14), 
we see that the term ( z / ~ ' / ~ ) ' u , ~ ( ( x /  hi)') from (5.16) is a summand in Z,,, if 
i + jk/2 = m. In general, each summand in Z,,, contains i z's and j X's with i and 
j related to m in this same way. We see that if m is odd, then either i or j must be odd 
and Z,,, must be an odd function of z or X. 

We now show how to go from (5.24) to (5.9). We claim that for each m E 

(0, ...,2 M  + 1) 

for some constant c ,  > 0 and that for sufficiently small 6 E (0, 6,] 
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If m is odd, then lRhl Em,kdPBle-Azkdz = 0 since Em,, is an odd function of 
either z or X. Substituting (5.26)-(5.27) into (5.24), we obtain the expansion (5.9) 
with 

We prove (5.26). For each m E (0,. . . , 2 M  + 1) there exists an integer Nm2 0 
such that 

(5.29) ( Em,,(z, X )  ( Gconst(1 + I z lNm)(l+ I I  x I I  Nm). 

BY(5.131, 

{ ( z ,  x): ( Z  (<8n1Ik,X E ~ ( 8 ,n, z ) )"  

(5.30) c {(z,  X) :  I z I > 8n1Ik/2,X E XI )  

U ( (z ,  x ) :  / z 1 < 8n1/*/2, X E XL , I XI1 2 8 6 / 2 3 ,  

where the superscript c denotes complement in R X XL . By (5.29)-(5.30) 

(5.31) 

+JR (1 + / z lNm)e-'lk dz J (1 + llxll N m )  d p B L ( x )  . 
(X: x€3CL,11XlI>6~n/2)  I 

By the strict positivity of A, the evenness of k, and Lemma 4.3 applied to P := PBI, 
the right-hand side of (5.31) is bounded by constexp(-nc,) for some c ,  > 0. This 
yields (5.26). 

We prove (5.27). By (5.19) with M = 0, we have for ( z 1 < 8n1/k 

By (5.23), (5.32) there exists a constant c, > 0 such that 

I T,,,(n) I < const e-"' + n-2(M+1)ik[ 

By the strict positivity of A, the evenness of k, and Lemma 4.3 applied to P := PBl, 
the integrals in (5.33) are finite for all sufficiently small 8 E (0, a,]. This yields 
(5.27). 
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We next prove Lemmas 5.1-5.3. 
PROOFOF LEMMA5.1. We first prove existence and properties of @ ( V ) .  The 

formula 

R ( V ,  := c~ + B,TF;(V+ a)
(5.34) 

= @ + B,T[FI (Y*  + v + @)- F I ( Y * )- F"(Y*)(v  + a)] 
defines a C" mapping R of X X X into X .  We have R(0,O) = 0 and D,R(O, 0 )  = I ,  
where DQ denotes partial differentiation with respect to @. By the implicit function 
theorem [Berger, Theorem 3.1.10 and Remark], there exists a unique Cm mapping 
@ ( V )defined in a neighborhood Yof  0 such that @(O)= 0 and R ( V ,  @ ( V ) )= 0 for 
V E Y. @ maps Yinto X L  nGi)(A-') since @ ( V )= -B, rF;(V + @ ( V ) )and GI,(%,) 
C Gi)(rGr1(Y*)r)C X L  nGi)(A-I).The bound (5.3) follows since D@(O)= 0. 

We now prove (5.4). Substituting Y := zU in (5.2) and writing @ for @ ( z U ) ,W 
for ( z U  + @ ( z U ) ) ,we find for any X E X L  (SOthat r X  = X )  

From (5.35), we conclude that 

(5.36) (F ' (Y*  + w ) ,  X ) =  ( F ' ( Y * ) ,  X ) +  ( F U ( Y * ) ( W - @ ) X ) - ( A - ' @ ,  X ) .  

Since G1(Y*)= 0 ,  GU(Y*)U= 0 ,  we see that 

Thus the right-hand side of (5.36) equals - (A- ' (Y* + W ) ,  X ) .  This proves (5.4). 

PROOFOF LEMMA5.2. To prove the first assertion, it suffices to prove that for any 
x E X L  

(5.38) rA-'rPAPrX = X.  

For X E X L  , r X  = X,  and since rU = 0 ,  we have rpV = 7 V  = V - ( V ,  U ) U  for 
V E X .  Thus, 

= ~ p x- ( A ~ x ,U ) T A - I U= x - ( p x ,  A U ) T A - I U .  

Thus, (5.38) is proved once we show ( p X ,  A U )  = 0. The latter is easily checked 
from (5.1). A ,  is the covariance operator of a mean zero Gaussian measure PAL 
since A ,  is positive, symmetric, and trace class [Gihman-Skorohod, Theorem V.6.11. 
By [Rajput] the support of PALequals the closure of the range of A ,  ,which is X I  . 

PROOFOF LEMMA5.3. The assertions about A and B ,  follow from Lemma 4.4. 
Indeed, by definition of simple degeneracy and Lemma 5.2, the hypotheses of this 
lemma are satisfied with X I  := X I ,  A ,  := rpApr,  and A := rFU(Y*)r .In addi-
tion, (4.28) implies that for X E X L  (SOthat r X  = X )  
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We next prove the assertions about k and A. Consider the number 6 in Lemma 
5.1. For I z 1 < 6, @(zU) is well defined and smooth and 

Since Y* is an isolated minimum point of G and @(zU) # -zU for z sufficiently 
small (by (5.40)), we have for all such z 

(5.41) o < G(Y*+ zu+ @(zu) )  - G(Y*) = A Z ~+ o ( z k + l ) .  

We conclude that k is even and A > 0. We next prove k > 2. Since U, @(zU) E 

q(A-I),  we have by (3.6) and (5.40) 

But GU(Y*)U = 0 and comparison of (5.42) with (2.13) shows that k > 2. 
In order to prove (5.8), we need to know the joint distribution of (Y, U)  and TY, 

where Y is an Xvalued random variable with distribution PA.This joint distribution 
is given in the next lemma, which will be proved after the completion of the proof of 
Lemma 5.3. 

LEMMA 5.4. Given Y E X, define z(Y) : = (Y, U). For any bounded integrable 
function f: X X XL+R, we have 

The measure PALis defined in Lemma 5.2. 

We now prove (5.8) by showing that for all 6 E (0,6) 

where Sn(6, z) := {X: X E X I ,  1 1  W(z/ Jil) + X/ Jill1 < 6). Scaling z -, zn 1 / 2 - 1 / k  

completes the proof. By Lemma 4.5, the left-hand side of (5.44) equals 
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We write (5.45) as an iterated integral using Lemma 5.4 and obtain 

.exp -nF Y* + ---[ I zu;xI] 
.exp[-nI(y*) - ~ ( A - ~ Y * ,Z U +  X )  I(ZU) - (A-'(zu).  x)]~ P , ~ ( X )dz. 

For fixed z satisfying ( z (<Gfi,  we have @(zU/ fi) E XL and so we may change 
variables X -,X + f i@(zU/ fi) in the inner integral in (5.46). For the rest of thls 
proof we write @ and W instead of @(zU/ fi) and W(z/ fi) := zU/ fi  + 
@(zU/ fi in order to save space. By Lemma 5.2, @ E q ( A 2 )  and so by Lemma 4.5, 
(5.46) equals 

(5.47) 

- ( A - ~ ( z u ) ,  x +  h@)-( i /2)n(a; l@, a)- ~/ ; ; (A-I@,x)]dpA1(x)  dz. 

Since @ and X are in XL,we can replace A: in (5.47) by A-', and after collecting 
terms, (5.47) becomes 

exp[-~I(Y* + w)] exp[-fi(A-'(y* + W),  x)]dPA1(X) dz. 

By (5.39), dPAI( X )  = ~ - 1 / 2 e x p ( ( 1 / 2 ) ( ~ " ( ~ * ) ~ ,X)) dPBI (X).  Comparing (5.48) 
with (5.44), we see that we are done once we have shown for all X E Sn(6,z)  

(5.49) +nI(Y* + W )  + n(A-'(Y* + W ) ,  X/ f i )  

But by the definitions of G and F3,(5.49) follows if we prove for all X E X' 

But this follows from (5.4) in Lemma 5.1 if in the latter we write z/ fi for z. This 
proves (5.8). 
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PROOFOF LEMMA5.4. Let Y be an Xvalued random variable with distribution PA. 
Define h(rY; .) to be the conditional distribution of z ( Y )  given rY and P the 
margnal distribution of rY. By [Skorohod, p. 631,we have 

We first calculate h(rY; .) and P. We then prove P << PALand calculate dP/dPAI to 
go from (5.51) to (5.43). 

We define 

r Y ) ,  -

Then we have (cf. [Simon, Theorem 3.91) 

p ( r Y )  := E,{z(Y) ( u2 := E ~ ~ { z ( ( Y )p ) 1 2 .  

The conditional mean p ( r Y ) is the unique functional of the form ( W ,  r Y )  for some 
element W E X whch satisfies for any V E X 

EPA{(.(Y) - V ) l  =P ( ~ Y ) ) ( ~ Y ,  0. 

Using z ( Y ) := ( Y ,  U ) ,  rY := Y - ( Y ,  U)U,  EPA{(Vl, Y ) ( V 2 ,  Y ) )  = ( A V l ,  V2) ,  
where V l ,  V2 are arbitrary elements of X ,  one verifies that 

p ( r Y )  = -(A- 'u,  ~ Y ) / ( A - ' u ,  u ) ,  u2 = l / (A - 'U ,  u ) .  

From (5.52),we have for X E XI 
(5.53) 

We now find P. The random variable rY has mean zero. For any elements V l ,  

v2 E EX, 
EPA{(V1>7 Y ) ( V 2 > 7 Y ) )= EPA{(rvl, Y ) ( 7 5 ,  Y ) )  = (rArV1, V2). 

Thus, rY has covariance operator TATand we write P = P,,,. 
By (5.51), (5.53), we are finished once we prove for X E X' 

We prove (5.54)by showing 

We derive (5.55)from Lemma 4.4. Define X I  := ,AI := TAT, 

for X E XI ,B ,  := A ,  := rpApr. We must prove 

(5.57) A;' + A > 0 on q ( A ; ' )  := XI n q ( A - ' ) ,  
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(5.58) B, = (A;' + A)-', 

(5.59) A ,  := det(I  + AIR)  = (AU, U)(A-'U, U).  

We prove (5.57). Define the bounded operator p on X by 

After straightforward modifications in the proof of Lemma 5.2 (formally, replacing 
A by A-' and A-' by A), one finds A;' = rpA-lpr. Since rp = r,  we have for 
X E 9(Ay1) 

Thus for X E q(A;'), (A;' + A)X = rA-'rX. This proves (5.57) and since, by 
Lemma 5.2, B, := A, = (rA-'r)-', (5.58) also follows. We now prove (5.59). We 
have A ,  = det(I + K A & )  and &A& is the rank one operator on XI given 

by 

Thus A,  = 1 + (TATA-~U,A-'u)/(A-Iu, U j .  Using rY := Y - (Y, U)U, one gets 
(5.59) after a short calculation. 

We now turn to the probabilistic limit theorems. We first prove Theorem 2.7, then 
state and prove extensions of Theorems 2.5 and 2.7 to the case where G has 
nonunique, isolated minimum points of which some are simply degenerate and the 
rest nondegenerate. These extensions are given in Theorem 5.5. We prove Theorems 
2.7 and 5.5 by applying Lemmas 4.1, 4.2, and 5.3 as modified by Remarks 4.l(a), 
4.2(a), and 5.3(a) respectively. 

PROOFOF THEOREM2.7. We prove that for any @ E C ( X )  

where we write x for l/k. We multiply the numerator and denominator of the 
left-hand side of (5.60) by n-('/2-x)exp(nG*). By Lemma 4.1 the resulting quotient 
equals ( P  := 1/2 - x )  

for any 6 > 0 and c = c(6) > 0. We apply Lemma 5.3 to the numerator and 
denominator of (5.52). The integral in the numerator of (5.61) equals the integral on 
the left-hand side of (5.8) if in the latter we pick 
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Hence for 6 E ( 0 , 6 ]  (5.61) equals 
(5.63) 

where 

Hn := G(Y* + W ( z / n x ) )  - G ( Y * )  - ~ ( z / n " ) ~ ,  

3 , = 3 ( ~ ( z / n x ) ,x and d t ( X ,  z )  := d P B l ( ~ ) e - A z kdz. 

We want to use the dominated convergence theorem to determine the n -+ oo 
limits of the integrals in (5.63). By (5.32), given b ,  > 0 there exists 6 E ( 0 , 6 ]  such 
that if z satisfies ( z I < 6nx , then 

(5.64) I nHn I < b , z k .  

By (5.23), given b2 > 0 there exists 6 E ( 0 , a  such that if z satisfies I z I < 6nx  and 
X E S(6 ,  n ,  z ) ,  then 

(5.65) l n @ 3 , n l ~b211Xl12. 

For J,  equal to $ or 1, define 

(5.66) J,;, := J,(zu+ n x @ ( z U / n x )+ ~ / n ' / ~ - ~ ) .  

By (5.64), (5.65), if 6 E ( 0 , 6 ]  is sufficiently small, then 

By Lemma 4.3, the latter exponential is integrable with respect to dpB1(X)e -" I  dz 
over X' X R provided b ,  and b, are sufficiently small. But b ,  and b, small imply that 
6 is small. We conclude that for sufficiently small 6 E ( 0 , 6 ]  we may use the 
dominated convergence theorem to determine the limits of the integrals in (5.63). 
For fixed z E R, n x @ ( z U / n x )-+ 0 as n -, oo by (5.3). Hence for fixed z E R and 
X E X I ,  J,n + J , ( z U ) ,nHn * 0 ,  

-+ 0 ;  also x ( - , ~ x , S ~ X ) ( Z )* 1, X ~ ( ~ , n , z ) ( x )* 1. 
We conclude that as n -+ co the quotient in (5.63) equals 

This proves (5.60). 
We now assume that G has nonunique minimum points {Y;; a = 1,. ..,L) of 

whlch the first J are simply degenerate and of finite type ( J  E ( 1 , .  ..,L ) )  and the 
last L - .I nondegenerate. Thus we have L E {2,3, .  ..). We extend Theorems 2.5 
and 2.7 to cover this case. The following quantities arise in these extensions. For 
each a E (1 , .  .. , J ) ,  we pick a unit vector U, E X ,  := ker{Gt'(Y,*)). Let r, be the 
orthogonal projection onto X t  .We define the operator p, E a(%)by 

(5.69) P,Y := Y - [ ( A & ,  Y ) / ( A U a ,  Ua)14 

and the determinant 

(5.70) A, := det [ l  + T,~,A~,~,F"(Y,*)~,] .  
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A, is well defined and A,  > 0 by Lemma 5.3. We let k ,  and A, denote the type and 
strength, respectively, of Y z  and define 

The number ka is called the maximal type. Finally, we define numbers 

and 

(5.73) 

In order to simplify the statement of Theorem 5.5, we define the type of the 
nondegenerate minimum points, if any, to be two; i.e., if J < L ,  then k, := 2 for 
a E { J  + 1 , .  . . ,L ) .  Since G is assumed to have simply degenerate minimum points, 
we see that for a E { J  + I , . .  . , L ) ,  k, = 2 < kn. For such a,  we define 6, := 0, 
b, := 0. 

In the next theorem (5.74) generalizes Theorem 2.5 and (5.74)-(5.75) generalize 
Theorem 2.7. We recall that {Y,) are Xvalued random variables with distributions 
{Q,} in (1.6). The symbol % in the line after (5.75) denotes vague convergence 

(defined just before Theorem 4.6). See (2.28) and the statement of Theorem 2.7 for 
the definition of the measures {tko,A,) on X which appear in (5.76)on R and {t::,Am) 
and the next line. 

THEOREM5.5. Suppose that G has minimum points { Y z ;  a = 1 , .  .., L )  of which the 
first J are simply degenerate and of finite type ( J  E { 1, .  . . ,L ) )  and the rest nondegen- 
erate. Suppose that Fsatisfies the bound (2.l)(b). Then for all @ E C ( X )  

oil 

i.e., Y,/n - Z { a : k a = k ~ l  =baayz. For each a E { 1,. ..,J )  for which k ,  kg and for all 

@ E C ( X )  which vanish at infinity, 

(5.75) 

i.e., (Yn - n Y ~ ) / n l - ' / * ~  = 1) suchY b,[::,Ae. If there exists a unique index a (say a 

that k ,  = kn, then (5.75) can be strengthened: for all@ E C ( X )  

(5.76) 

oil 

i.e., (Y ,  - n Y ~ ) / n ' - ' / ~ ~-+ 
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PROOFOF THEOREM5.5. To prove (5.74), we prove that for any @ E C(X) 

as n - oo. Let Z(a, 6) := S(hi Yz, hi6). We multiply the numerator and denomina- 
tor of the left-hand side of (5.77) by n-(1/2-xP)exp(n~*), where x# := l/k#. By 
Lemma 4.1, the resulting quotient equals 

for any 6 > 0 so small that Z(a, 6) n Z(P, 6) = 0 if a # p and c = c(6) > 0. 
We first consider the summands in (5.78) with a E (1,. . . , J ) ,  which correspond 

to the simply degenerate minimum points {Yz; a = 1,. . . , J ) .  We apply Lemma 5.3 
to each of these terms. There exists 6> 0 such that for a11 6 E (0,6] 
(5.79) 

= Y,n +,,ne-nHa,ne-nF34~n I.=( X )  exp(-X,zkn) dz, dPB 

wherey, := [(277)(AU,, ~ , ) d , ] - ' / ~ ,  S,(6, n, z) := S(Yz; 6, n, z), 

+ equals @ or 1, W, := W(Yz; .), 

, := (  Y  W ( z n x )  X hi),  and PBLs0 As in the proof of:= PB,(n,. 
Theorem 2.7, we may use the dominated convergence theorem to determine the 
n + oo limit of the iterated integral on the right-hand side of (5.79). Since, as -
n + oo, + +(Yz) for fixed z real, X E X I ,  this iterated integral tends to 
+(Y,*) /,exp[-X,zk=] dz. Since b, = y, /,exp[-X,zk~] dz, we conclude that for a E 

{ l , . . . , J )  

Assuming J < L, we now consider the summands in (5.78) with a E { J  + 1,. . . ,L), 
which correspond to the nondegenerate minimum points {Yz; a = J + 1,. . . ,L).  By 
the proof of (4.41) in Theorem 4.6, we have for such a 

-- nx"-'/'[+(Yz) + o(l)]  as n + oo. 
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We substitute (5.82)-(5.83) into (5.78) and take n -+ oo. Since + > x, 2 x# for 
a E { 1,. ..,J),we obtain (5.77). 

We next prove (5.76) assuming that a = 1 is the unique index for which k, = kg. 
For a E (2,. . . ,J ) ,  we have that 2 < k, < k# and Y,* is simply degenerate while for 
a E {J+ 1,. . . ,L), we have that k, = 2 and Y,* is nondegenerate. We multiply the 
numerator and denominator of the left-hand side of (5.76) by n-('/2-xP)enG*, where 
X% := l/k#. By Lemma 4.1, the resulting quotient is given by an expression as in 

(5.78) but with +(Y/ JiT) replaced by +(n-( ' /2 -Xq(~ - JiT YT)). We apply Lemma 
5.3 to the summands in this expression with a E (1,. . . , J )  and Lemma 4.2 to the 
summands with a E { J  + 1,. . . ,L). Arguing as above but omitting details, we find 
that the left-hand side of (5.76) equals 

where x, := l/k,. As n -+ co, this tends to the right-hand side of (5.76) since 
X, >X# for a E {2,.. . ,L). 

We next prove (5.75) for a = 1. Arguing as above but omitting details, we find 
that for some 6> 0 , s  E (O,6], c = c(6) > 0 the left-hand side of (5.75) equals 

where 

In (5.85), we write x for l/k# but otherwise the notation is the same as in (5.79). 
Since @ is bounded and vanishes at infinity, we see by dominated convergence that 
the integrals in (5.85) corresponding to a # 1, k, = k#, tend to zero as n -+ oo 
provided S is sufficiently small. Thus, as n + oo, (5.85) tends to 

This equals the right-hand side of (5.75) since b, = y, lR exp(-Alzk') dz and b, = 

b l ~ ' x ~ p : ~ = k ~ ~ b p .17 
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