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Abstract

A Sidon sequence is a sequence of integers a1 < a2 < . . . with the property that
the sums ai+aj (i ≤ j) are distinct. This work contains a survey of Sidon sequences
and their generalizations, and an extensive annotated and hyperlinked bibliography
of related work.

1 Introduction

For a subset A of an abelian group (usually Z), define

A∗(k) := #{(a1, a2) ∈ A×A : a1 + a2 = k}

and
A◦(k) := #{(a1, a2) ∈ A×A : a1 − a2 = k}.

In 1932, Simon Sidon [3] considered sets of integers with both A∗ and A◦ bounded1.
It is easily shown (and done so in the next section) that A∗(k) ≤ 2 for all k if and only if
A◦(k) ≤ 1 for all k 6= 0. This led Sidon to ask Erdős how large a subset of {1, 2, . . . , n} can

∗The author is a National Science Foundation Postdoctoral Research Fellow at the University of
California at San Diego, grant DMS-0202460.

1Here is one of his theorems. Suppose that C and g are real numbers. There is a constant K = K(C, g)
such that for every set A of positive integers with A∗(k) +A◦(k) ≤ g (for all k > 0) and every sequence
λa with

∑ |λa|2 ≤ C, there is a function f : [0, 1] → C which is bounded by K and f̂(a) = λa for every
a ∈ A.
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be with the property that A∗(k) ≤ 2 (for all k)? Since that time such sets, e.g., {1, 2, 5, 7},
have been known as Sidon sets. In other words, A is a Sidon set if the coefficients of

(∑
a∈A

za

)2

are bounded by 2.
Unfortunately, many authors call Sidon sets “B2 sets”, and harmonic analysts use the

term “Sidon set” to mean something entirely different. These two factors make searching
the literature rather difficult. In Math Sci-Net, for example, it is impossible to search
for a math expression such as “B2”, and a search for “Sidon” returns almost 700 hits,
most concerning the harmonic analysts’ Sidon sets. Further, there are several different
notations in use, sometimes making it difficult to compare results. For these reasons, I felt
that it would be useful to compile a complete annotated bibliography with a consistent
notation and to lay out the major avenues of research, past, present and possibly future.

In loose terms, requiring a set to have the Sidon property forces it to be thin, e.g.,
it cannot contain three consecutive integers. The most basic question is “How thick can
a Sidon set be?” There are several ways to make this question explicit, several different
settings to explore, and a variety of generalizations. Having only partially solved these
problems, researchers have recently begun turning their attention to the question “what
is the structure of a maximally thick Sidon set?”

In Section 2, we define the relevant sets and counting functions and fix the terminology
used in the annotations. In Section 3, we present the known general constructions of
(generalized) Sidon sets. In Sections 4 and 5 we give the state-of-the-art results concerning
the density of Sidon sets. In Section 6 we state a few of the results concerning the structure
of Sidon sets and their sumsets. In Section 7 we discuss the problem of finding a Sidon
subset of a given set, such as Sidon sets whose elements are squares or fifth powers. In
Section 9 we list some of the major unsolved questions.

Finally, we give a partially annotated bibliography of works which either develop or
apply the theory of Sidon sets. The bibliography is, so far as I know, complete and 100%
accurate. The bibliography is heavily hyperlinked (so you lose something if you print it
out), and the links to Math Sci-Net reviews require a Math Sci-Net subscription. Please
email the author regarding any omissions, additions, errors, or clarifications.

2 Terminology

We begin by defining a generalized Sidon sequence (with parameters h and g) to be a
sequence A such that the coefficients of

( ∑
a∈A

za

)h

(1)

are bounded by g. We note that the coefficient of zk in (1), which we denote A∗h(k),
has a number-theoretic interpretation: it is the number of ways to write k as a sum of h
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(not necessarily distinct) elements of A. Also note that this definition is sensible for A a
subset of any group G.

Our notation A∗h(k) is motivated by the notation for Fourier convolution: for any
functions f, g, we have

f ∗ g(k) =
∑
x∈G

f(x)g(k − x).

Thus, if A is the indicator function of the sequence A (a common and useful abuse
of notation), then A∗h(k) is exactly the convolution of h copies of A evaluated at k:
A∗h(k) = A∗ · · · ∗A(k). For brevity, we write A∗ in place of A∗2. Likewise, we hijack the
notation of Fourier correlation:

A◦(k) =
∑

x

A(x)A(k + x) = #{(a1, a2) ∈ A×A : a2 − a1 = k}.

While convolution is associative, correlation is not. Thus A◦h is ill-defined; we adopt the
convention A◦h = A◦h−1 ◦ A.

Definition 1 (B∗
h[g] sequence). A sequence A is a B∗

h[g] sequence if the coefficients of(∑
a∈A za

)h
are bounded by g. If A ⊆ G 6= Z, then we call A a B∗

h[g](G) sequence. In
particular, if G is the additive group of integers modulo n, then we speak of B∗

h[g] (mod n)
sequences. We use the same notation for the property and for the class of sequences with
the property, i.e., if A is a B∗

h[g] sequence then we write A ∈ B∗
h[g].

Thus, Sidon sequences are exactly the B∗
2 [2] sequences. We note that A◦ is bounded

by 1 if and only if A∗ is bounded by 2. For if A◦(k) > 1 (with k > 0), then there are
a1, a2, a3, a4 ∈ A with k = a1 − a2 = a3 − a4, and at most two of the ai are equal. This
means that a4 + a1 = a1 + a4 = a2 + a3 = a3 + a2, so that A∗(a1 + a4) ≥ 3 (it is possible
that a2 = a3 or a4 = a1, but not both). Note however that if A = {2k, 2k + 1: k ≥ 1},
then for all k, A∗(k) ≤ 4, while A◦(1) = ∞; and if A = {±2k : k ≥ 1} then A◦(k) ≤ 3 for
all k 6= 0, but A∗(0) = ∞. The upshot is that B∗

2 [2] sequences are not only historically
important, but they are qualitatively easier to deal with. In essentially all ways, more is
known about Sidon sequences than about B∗

h[g] sequences with h > 2 or g > 3.
We use the notation [n] := {1, 2, . . . , n}. Obviously the B∗

h[g] property is invariant
under translation and dilation, so a supposition of the type “A ⊆ [n]” can usually be
replaced with “A is a subset of an arithmetic progression of length n”.

Definition 2 (R and C). Rh(g, n) is the largest cardinality of a B∗
h[g] sequence contained

in [n]. Ch(g, n) is the largest cardinality of a B∗
h[g] (mod n) sequence.

Definition 3 (Bh[g] sequence). A Bh[g] sequence is a B∗
h[h!g] sequence. If g = 1, then

we speak simply of Bh sequences.

We note that many authors define a Bh[g] sequence to be a B∗
h[h!(g +1)− 1] sequence

(and so a Sidon sequence, for these authors, is a sequence for which A∗h(k) ≤ 3). This
is not without reason. If k = a1 + · · · + ah and the ai are distinct, then there are h!
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rearrangements of the ai which contribute to A∗h(k). Since there are asymptotically few
h-tuples fromA×· · ·×A that have repeated ai’s, one expects that there is little distinction
(asymptotically) between B∗

h[h!g] sets and B∗
h[h!(g+1)−1] sets. This expectation, however,

has not been proven to hold except for h = 2, g = 1.

3 Constructions

3.1 The greedy algorithm

The obvious first attempt at constructing a B∗
h[g] sequence is to be greedy. Set γ1 = 1,

and define for each k ≥ 1 the sequence

Gk = {γ1, γ2, . . . , γk}
where γk is the least m > γk−1 such that {γ1, γ2, . . . , γk} is a B∗

h[g] sequence. Then

Gh[g] :=
∞⋃

k=1

Gk

is an infinite B∗
h[g] sequence.

Mian & Chowla [10] computed the first terms of G2[2] (i.e., the greedy Sidon sequence,
also called the Mian-Chowla sequence) to be 1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, . . . .
Stöhr [12] notes that the Mian-Chowla sequence satisfies γk < (k− 1)3 + 1. Even for this
most simple case, however, the growth of γk is not well understood. See [42]. The points
(k, logk(γk)) are shown in Figure 3.1.

It is interesting to study the greedy sequence with different seeds. Start by setting
γ1, . . . , γr, and then continue the sequence in the same manner as above. The resulting
sequence is denoted Gh[g; γ1, . . . , γr].

Conjecture 4. For any h and g, there are not positive integers r, γ1, . . . , γr such that

inf
A∈B∗h[g]

{∑
a∈A

1

a

}

is achieved with A = Gh[g; γ1, . . . , γr].

This conjecture is dealt with in [60,108]; it is known that the infimum in Conjecture 4
(for g = h = 2) is between 2.16 and 2.25.

3.2 Ruzsa’s sets

A very simple construction of B2 sequences was given by Ruzsa [59], which is generalized
in [127] to B2[g

2] sequences. Let θ be a generator of the multiplicative group modulo the
prime p. For k, t ∈ [p− 1], let at,k be the congruence class modulo p2 − p defined by

at,k ≡ t (mod p− 1) and at,k ≡ kθt (mod p).
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Figure 1: The points (k, logk(γk)) for the greedy Sidon set G2[2].

Define the set
Ruzsa(p, θ, k) := {at,k : 1 ≤ t < p} ⊆ Z/(p2 − p).

If K is any subset of [p− 1], then

Ruzsa(p, θ,K) :=
⋃

k∈K
Ruzsa(p, θ, k)

is a subset of Z/(p2 − p) with cardinality |K|(p− 1) and

Ruzsa(p, θ,K) ∈ B2[|K|2].
An example is given in Figure 3.2: the row labeled k is Ruzsa(13, 2, k). Note that each

row is a translate modulo 132 − 13 of the row above (and rotated). This is because

at,kθ + p ≡ a(t+1 mod p−1),k (mod p2 − p),

and consequently Ruzsa(p, θ, kθ) + p = Ruzsa(p, θ, k). Since θ is a generator of the
multiplicative group modulo p, this implies that for fixed p and θ all of the various
Ruzsa(p, θ, k) are translates of one another.

3.3 Bose’s sets

Bose [6] constructed Sidon sequences by using finite affine geometry. His construction was
extended to Bh sequences (and given in the language of finite fields) in [15], and extended
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t

k

1 2 3 4 5 6 7 8 9 10 11 12

1 145 134 99 16 149 90 115 152 57 10 59 144
2 121 86 3 136 77 102 139 44 153 46 131 132
3 97 38 63 100 5 114 7 92 93 82 47 120
4 73 146 123 64 89 126 31 140 33 118 119 108
5 49 98 27 28 17 138 55 32 129 154 35 96
6 25 50 87 148 101 150 79 80 69 34 107 84
7 1 2 147 112 29 6 103 128 9 70 23 72
8 133 110 51 76 113 18 127 20 105 106 95 60
9 109 62 111 40 41 30 151 68 45 142 11 48
10 85 14 15 4 125 42 19 116 141 22 83 36
11 61 122 75 124 53 54 43 8 81 58 155 24
12 37 74 135 88 137 66 67 56 21 94 71 12

Figure 2: Table of at,k with p = 13, θ = 2. Each row is a Sidon set, the union of any
two rows is a B∗

2 [8] set, the union of any |K| rows is a B∗
2 [2|K|2] set. Specifically, the row

labeled k is Ruzsa(13, 2, k).

to B2[g
2] sequences in [127]. Let q be any prime power, θ a generator of the multiplicative

group of Fqh , and k ∈ Fq, and define the set

Boseh(q, θ, k) := {a ∈ [qh − 1] : θa − kθ ∈ Fq}.
Boseh(q, θ, 1) is Bh (mod qh − 1) set, and some work (see [11]) has been done on the
question of how quickly these sets can be computed and whether varying θ (with h = 2)
can help produce a Sidon set with smaller largest element. If K is any subset of Fq \ {0},
then

Bose2(q, θ,K) :=
⋃

k∈K
Bose2(q, θ, k)

is a B2[|K|2] (mod q2 − 1) sequence.
An example is given in Figure 3.3, with q = 13, h = 2, F132 = F13[x]/(x2 + 2), and

θ = 1+3x. The column labeled c1 is Bose2(13, 1+3x mod (13, x2 + 2), c1). Note that, as
with Ruzsa’s sets, varying k has the effect of translating the set:

Boseh(q, θ, k) = Boseh(q, θ, 1) + logθ(k).

We note that, unlike Ruzsa’s sets, each row (except the one labeled zero) in Figure 3.3 is
also a Sidon set.

3.4 Singer’s sets

Sidon sequences arose incidentally in Singer’s work [4] on finite projective geometry. While
Singer’s construction gives a slightly thicker Sidon set than Bose’s (which is slightly thicker
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c1

c0

0 1 2 3 4 5 6 7 8 9 10 11 12

0 77 147 21 49 35 91 7 119 133 105 63 161
1 168 164 148 1 19 114 87 123 138 79 13 76 116
2 70 25 66 40 50 149 71 83 89 146 16 18 157
3 112 23 58 108 125 31 92 20 67 113 60 82 131
4 140 153 95 159 136 48 110 86 120 88 51 59 141
5 126 96 127 34 45 122 37 145 74 81 106 139 72
6 14 90 93 137 128 15 10 130 27 152 101 33 162
7 98 78 117 17 68 111 46 94 99 44 53 9 6
8 42 156 55 22 165 158 61 121 38 129 118 43 12
9 56 57 143 135 4 36 2 26 132 52 75 11 69
10 28 47 166 144 29 151 104 8 115 41 24 142 107
11 154 73 102 100 62 5 167 155 65 134 124 150 109
12 84 32 160 97 163 54 39 3 30 103 85 64 80

Figure 3: The least positive integer k such that (1 + 3x)k = c0 + c1x mod (13, x2 + 2).
The column corresponding to c1 is the Sidon set Bose2(13, 1 + 3x mod (13, x2 + 2), c1).

than Ruzsa’s), the construction is more complicated — even after the simplification of [15].
Singer’s construction was extended to B2[g

2] sequences in [127]. No computational work
has been published for Singer’s sets.

Let q be any prime power, and let θ be a generator of the multiplicative group of Fqh+1 .

For each ~k = 〈k1, . . . , kh〉 ∈ Fh
q define the set

T (~k) := {0} ∪
{

a ∈ [qh+1 − 1] : θa −
h∑

i=1

kiθ
i ∈ Fq

}
.

Then define
Singerh(q, θ,

~k)

to be the congruence classes modulo qh+1−1
q−1

that intersect T (~k). Also define

Singerh(q, θ,K) :=
⋃

~k∈K
Singerh(q, θ,

~k),

where K is any subset of Fh
q . The set Singerh(q, θ, 〈1, 0, 0, . . .〉) is a Bh (mod qh+1−1

q−1
) set.

The set Singer2(q, θ, 〈1, [k], 0〉) is a B∗
2 [2k

2] set.

3.5 Erdős & Turàn’s sets

Erdős & Turàn [5] gave a construction based on quadratic residues. These sets are sub-
stantially thinner than the constructions of Ruzsa, Bose, and Singer given above.
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Fix a prime p, and let (k2) be the unique integer in [p− 1] congruent to k2 modulo p.
The set {2pk + (k2) : 1 ≤ k < p} is a B2 set contained in [2p + 1, 2p(p− 1) + 1].

3.6 Probabilistic Sets

The seminal paper of Erdős & Rényi [13] introducing the probabilistic method to com-
binatorial number theory contains a small section on B2g sets. The crucial observation
made is that (setting pn = 1/

√
n) the sum

N−1∑
n=1

pnpN−n

is bounded independent of N . In particular, they prove the existence of an infinite B∗
2 [g]

set a1 < a2 < · · · satisfying
ak = O (

k2(1+2/(g−1))
)
.

See the review of [13] for a more detailed explanation.
See [84,92,94,99,116,128] for some applications of probability to Sidon sequences, and

vice versa.

4 The size of finite Sidon sequences

One of the “most wanted” problems is to asymptotically estimate Rh(g, n) for any h, g
with h > 2 or g > 3. Also on the “most wanted” list is a construction of B∗

h[g] sequences,
with g > h!, which is dense but is not merely several Bh sets woven together (such sets
do exist: [25]).

We measure the thickness of B∗
h[g] sets with the quantity:

σh(g) := lim
n→∞

Rh(g, n)
h
√
bg/h!cn

.

Strictly speaking, this limit is not known to exist for h > 2 or for g > 3. One should
always understand a lower bound on σh(g) as being a lower bound on the corresponding
lim inf, and an upper bound as being an upper bound on the lim sup. If g = h!, then we
simply write σh.

There are a number of conjectures that are natural to make:

1. The limit in the definition of σh(g) is in fact well-defined.

2. For each h, σh(g) is an increasing function of g.

3. For each h, limg→∞ σh(g) is defined and finite.

4. If kh! ≤ g1 ≤ g2 < (k + 1)h!, then σh(g1) = σh(g2).
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Figure 4: The best known upper and lower bounds on σ2(g).

As basic as these questions may seem, they remain unanswered. Regarding question 3,
the limit is known to be bounded between two positive constants. Sadly, there isn’t even
a conjecture as to growth of σh as a function of h (it may well depend on the parity of h).

The only explicit values known are σ2(2) = σ2(3) = 1.

4.1 h = 2

Erdős offered USD 500 for answer to the question, “Is R2(2, n) −√n unbounded?” The
answer is likely “yes”; it is also likely that R(2, n) − √n is nonnegative. Unfortunately,
there has been no progress on these questions since 1941, when it was found that

−nα/2 < R(2, n)−√n < n1/4 + 1,

the lower bound holding only for n sufficiently large, with α being a real number such
that there is always a prime between n− nα and n (the current record is α = 0.525).

The best known upper and lower bounds on σ2(g) are shown in Figure 4.1. The lower
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bound is

σ2(4) ≥
√

8/7 > 1.069,

σ2(6) ≥
√

16/15 > 1.032,

σ2(8) ≥
√

8/7 > 1.069,

σ2(10) ≥
√

49/45 > 1.043,

σ2(12) ≥
√

6/5 > 1.095,

σ2(14) ≥
√

121/105 > 1.073,

σ2(16) ≥
√

289/240 > 1.097,

σ2(18) ≥
√

32/27 > 1.088,

σ2(20) ≥
√

40/33 > 1.100,

σ2(22) ≥
√

324/275 > 1.085,

and for g ≥ 12

σ2(2g) ≥
√

2
g + 2 bg/3c+ bg/6c√
6g2 − 2g bg/3c+ 2g

.

In particular,
lim
g→∞

σ2(g) ≥
√

121/96 > 1.122.

The upper bound is a combination of

σ2(2g) ≤
√

7
4
(2− 1/g)

and

bg/2c
g

σ2(g)2 ≤





1.74043− 1.00483/g, g ≤ 8 and even;

1.58337− 0.026335
g

+
√

0.011572− 0.083397
g

+ 0.00069356
g2 , g ≥ 10 and even;

1.74043− 4.75492
g

, g ≤ 23 and odd;

1.58337− 0.071949
g

+
√

0.011572− 0.22784
g

+ 0.0051768
g2 , g ≥ 25 and odd.

In particular,
lim
g→∞

σ2(g) ≤ 1.839.

For g = 2, the upper bound is due to Erdős & Turàn [5] and the upper bound is
due to Singer [4]. For g = 3, the upper bound is Ruzsa’s [59], and the lower bound is
from R(g + 1, n) ≤ R(g, n). For g > 3 the upper bound is a combination of Green [113]
(for small g) and Martin & O’Bryant [126] (for large g). The lower bound for g = 4 is
due to Habsieger & Plagne [119], the g = 6 and g = 8 bounds are due to [118], and for
all other even g by Martin & O’Bryant [127]. The lower bounds for odd g > 3 are just
σ2(2g) ≤ σ2(2g + 1).

The proof of σ2(2) = 1 is succinct and elegant; we present it momentarily. The upper
bound was found initially in [5] and simplified in [19]. The lower bound was found in [4]
and simplified to this form in [59].

Theorem 5. The largest Sidon subset of [n] has ∼ √
n elements, i.e., σ2 = 1.

Proof. Let 1 ≤ a1 < a2 < · · · < ar ≤ n be a Sidon sequence, and consider the differences
(the parameter u will be set to

⌊
n1/4

⌋
):
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a2 − a1, a3 − a2, . . . , ar − ar−1

a3 − a1, a4 − a2, . . . , ar − ar−2
...

au+1 − a1, au+2 − a2, . . . , ar − ar−u

The k-th row contains r − k differences, and since {ai} is a Sidon set, these differences
are distinct. That’s a total of

∑u
i=1(r − i) = ru − 1

2
u(u + 1) differences. The sum of all

these differences is at least

ru−u(u+1)/2∑
i=1

i =
1

2

(
ru− 1

2
u(u + 1)

) (
ru− 1

2
u(u + 1) + 1

)
.

On the other hand, the sum of the differences in the k-th row telescopes to

r∑

i=r−k+1

ai −
k∑

i=1

ai < kn,

and so the sum of all the differences is less than
∑u

k=1 kn = nu(u + 1)/2. Comparing the
upper and lower bounds yields an inequality in terms of n, r, and u =

⌊
n1/4

⌋
. Calculus

implies that r < n1/2 + n1/4 + 1, which in turn implies that σ2 ≤ 1.
We now give Ruzsa’s construction of a Sidon set contained in p(p − 1) with p − 1

elements (p is any odd prime), from which it follows (using the elementary fact that the
ratio between consecutive primes goes to 1) that σ2 ≥ 1. Let θ be a primitive root modulo
p, and consider the set A of integers at (1 ≤ t < p− 1) defined by

1 ≤ at < p2 − p and at ≡ t (mod p− 1) and at ≡ θt (mod p).

Now suppose, by way of contradiction, that there are three pairs (arm , avm) ∈ A × A
satisfying arm + avm = k (for some fixed k ∈ Z). Each pair gives rise to a factorization
modulo p of

x2 − kx + θk ≡ (x− arm)(x− avm) (mod p),

using the critical relation armavm ≡ θrm+vm = θk (mod p). Factorization modulo p is
unique, so it must be that two of the three pairs are congruent modulo p, say

ar1 ≡ ar2 (mod p). (2)

In this case, θr1 ≡ ar1 ≡ ar2 ≡ θr2 (mod p). Since θ has multiplicative order p − 1, this
tells us that r1 ≡ r2 (mod p− 1). Since arm ≡ rm (mod p− 1) by definition, we have

ar1 ≡ ar2 (mod p− 1). (3)

Equations (2) and (3), together with ar1 + av1 = k = ar2 + av2 imply that the pairs
(ar1 , av1), (ar2 , av2) are identical, and so there are not three such pairs. Thus, A is a Sidon
set. In particular, A = Ruzsa(p, θ, 1).
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k min{ak − a1} Witness
2 1 {0,1}
3 3 {0,1,3}
4 6 {0,1,4,6}
5 11 {0,1,4,9,11}

{0,2,7,8,11}
6 17 {0,1,4,10,12,17}

{0,1,4,10,15,17}
{0,1,8,11,13,17}
{0,1,8,12,14,17}

7 25 {0,1,4,10,18,23,25}
{0,1,7,11,20,23,25}
{0,1,11,16,19,23,25}
{0,2,3,10,16,21,25}
{0,2,7,13,21,22,25}

8 34 {0,1,4,9,15,22,32,34}
9 44 {0,1,5,12,25,27,35,41,44}
10 55 {0,1,6,10,23,26,34,41,53,55}
11 72 {0,1,4,13,28,33,47,54,64,70,72}

{0,1,9,19,24,31,52,56,58,69,72}
12 85 {0,2,6,24,29,40,43,55,68,75,76,85}
13 106 {0,2,5,25,37,43,59,70,85,89,98,99,106}

Figure 5: Shortest Sidon sequences (from [127], extended by John A. Trono of Saint
Michael’s College [personal communication])
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g

k

2 3 4 5 6 7 8 9 10 11
3 4
4 7 5
5 12 8 6
6 18 13 8 7
7 26 19 11 9 8
8 35 25 14 12 10 9
9 45 35 18 15 12 11 10
10 56 46 22 19 14 13 12 11
11 73 58 27 24 17 15 14 13 12
12 86 ≤ 72 31 29 20 18 16 15 14 13
13 107 ≤ 101 37 34 24 21 18 17 16 15
14 ≤ 140 ≤ 128 44 40 28 26 21 19 18 17
15 ≤ 163 ≤ 52 ≤ 47 32 29 24 22 20 19
16 ≤ 195 36 34 27 24 22 21
17 ≤ 42 ≤ 38 30 28 24 23
18 34 32 27 25
19 ≤ 38 ≤ 36 30 28
20 33 31
21 ≤ 37 35
21 ≤ 38

Figure 6: min{n : R2(g, n) ≥ k} (from [127], extended by John A. Trono of Saint Michael’s
College [personal communication])

A Sidon sequence a1 < a2 < · · · < ak is called “short” if ak−a1 is as small as possible.
Figure 4.1 contains (up to reflection and translation) all of the short Sidon sequences with
k ≤ 10, and two of the short Sidon sequences with k = 11; I don’t know if there are more.
It is rumored that Imre Ruzsa has computed that min{a14 − a1} = 127.

Figure 4.1 gives the values of n for which R(g, n) − R(g, n − 1) = 1. This table
was computed using the easiest algorithm and a small amount of time. I encourage the
interested reader (or her students!) to extend it.

The construction given in [118] is optimized by choosing x so that R(g, x)/
√

gx is
maximized. This appears to happen (for each g) with a fairly small value of x; a formula
would lay to rest further optimization efforts (such as those in [119, 127]). Even given a
perfect optimization, however, it is unlikely that this construction is optimal in any sense.

4.2 h > 2

Very little is understood about Bh sets for h > 2. The construction of Bose & Chowla [15]
show that σh ≥ 1, and we know that σ2 = 1. Various improvements on the upper bound
on σh were given in [14,20,32,39,58,61,82]
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Figure 7: The best known upper and lower bounds on σh.

Cilleruelo [110] proved that σ3 ≤ 1.576, σ4 ≤ 1.673, and for h > 75,

σh
h ≤

5

2

(
15
4
− 5

4dh/2e

)1/4 (dh/2e!)2

√
dh/2e

for odd h, and

σh
h ≤

5

2

(
15
4
− 5

2h

)1/4
((h/2)!)2

√
h/2

for even h. He does give improvements for h ∈ [5, 74] also.
Ben Green [113] has improved these upper bounds and shown

σ3 ≤ (7/2)1/3 < 1.519

σ4 ≤ 71/4 < 1.627

σh ≤ 1

2e

(
h +

3

2
log h + oh(log h)

)
.

Green’s bound for σh ultimately relies on the observation that if Xi are independent
random variables taking values uniformly in a set of integers A, then the central limit
theorem implies that X1 + X2 + · · · + Xh has a normal distribution (for large h). While
Green’s bound is not given in an effective form, we presume that this could be done in a
straightforward manner.
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4.3 Cyclic groups

The earliest appearances of Sidon sets were as Monthly problems [1, 2] asking for Sidon
subsets of Zn. If A is a B∗

h[g](modm) set and gcd(k,m) = 1, then so is kA + r =
{ka+ r : a ∈ A}; we say that A and kA+ r are equivalent. Veblen and Dickson asked for
all inequivalent Sidon subsets of Zn for various n. The number of inequivalent modular
Sidon sets that arise from the construction of Bose & Chowla is investigated in [16,17].

The constructions of Ruzsa, Bose, and Singer all give modular Sidon sets. This would
seem to be a more symmetric setting, and so an easier setting. Unfortunately, while
the constructions are naturally modular, the upper bounds on Rh(g, n) sets all seem to
fundamentally rely on the asymmetry of [n]. Progress (beyond the very little in [127])
on bounding Ch(g, n) would be a significant contribution. Here’s what is known about
C2(g, n):

Theorem 6. Let q be a prime power, and let k, g, f, x, y be positive integers with k < q.

i.
(

C2(2,n)
2

) ≤ ⌊
n
2

⌋
, and in particular C2(2, n) ≤ √

n + 1;

ii. C2(3, n) ≤
√

n + 9/2 + 3;

iii. C2(4, n) ≤ √
3n + 7/6;

iv. C2(g, n) ≤ √
gn for even g;

v. C2(g, n) ≤
√

1− 1
g

√
gn + 1, for odd g.

vi. If q is a prime, then C2(2k
2, q2 − q)) ≥ k(q − 1);

vii. C2(2k
2, q2 − 1) ≥ kq;

viii. C2(2k
2, q2 + q + 1) ≥ kq + 1;

ix. If gcd(x, y) = 1, then C2(gf, xy) ≥ C2(g, x)C2(f, y);

5 The size of infinite Sidon sequences

Let A ⊆ Z be a Sidon sequence, and let A(n) = #(A ∩ [n]). Stöhr [12] strengthens an
unpublished result of Erdős and proved that

lim inf
n→∞

A(n)√
n/ log(n)

6= ∞

Stöhr also gave Erdős’s proof that there is a Sidon sequence with

lim sup
n→∞

A(n)√
n
≥ 1

2
;
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this was improved by Krückeberg [14] to 1/
√

2, and taken to B∗
2 [g] sequences by Cilleruelo

& Trujillo [111]. In [28] a Sidon sequence is constructed with

A(n) > 10−3(n log n)1/3

for sufficiently large n. Erdős asked [29] if there is a sequence a1 < a2 < . . . with ak =

o (k3−ε) for any positive ε; Ruzsa constructed a Sidon sequence with A(n) ∼ n
√

2−1+o(1).
Sheng Chen [55] conjectures that if A is a Bh sequence with counting function A(n),

then
lim inf
n→∞

A(n)
(

log n
n

)1/h

is finite. See also [44, 45, 56, 57, 66, 67, 77, 79, 80]. Neither the results nor the conjectures
have been extended to B∗

h[g] sequences.

6 The distribution of A and A +A
If An ⊂ [n] is a sequence of Sidon sets and |A| ∼ √

n, then An becomes uniformly
distributed in [n] (see [49]). Moreover, An becomes uniformly distributed in congruence
classes modulo m (for any fixed m) (see [90,95,120]). It is shown in [63] that if A is any
finite Sidon sequence, then the sumset A + A consists of at least c|A|2 intervals (for an
unspecified constant c). With care this can be improved to (|A|2− |A| − 1)/4. Extensive
computations indicate that if |A| ∼ √

n, then A+A consists of ∼ |A|2/3 intervals. Very
little is known about the structure of A + A. Must the size of the longest interval in
A+A go to infinity as n does (with |A| ∼ √

n)?
Martin & O’Bryant [126] conjecture that B∗

2 [g] sets with maximal size are uniformly
distributed. Current computations are insufficient to extend this conjecture to B∗

h[g] sets.

7 Restricted Sidon sequences

A well known conjecture [65] states that the fifth powers 0, 1, 32, 243, . . . are a Sidon
sequence. Ruzsa [116] shows that there is an α such that {n5 +bαn4c : n ≥ n0} is a Sidon
set. Cilleruelo [69] considered Sidon sequences all of whose terms are squares. Abbot
[46] studied the size of Sidon sequences contained in an arbitrary set of integers with
cardinality n (there is one with size at least 2

25

√
n).

Lindström [21,23] initiated the study of B∗
h[g] sets in group Zd.

Erdős [25] investigated Sidon subsets of B∗
2 [g] sets. Alon & Erdős [34] considered the

problem of decomposing a finite B∗
2 [g] into B2 sets; how many B2 sets are needed?

8 Generalizations

The graph theorist’s analogs of Sidon sets are magic and harmonious labelings. See
[26,27].
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The bigger setting for the Sidon question is that of sets which avoid a linear form. Let
L be an m× n matrix of integers. The set A is said to avoid L if there are no nontrivial
solutions to L~a = ~0 with ~a = (a1, a2, . . . , an)T , ak ∈ A. Sidon sets are the special case
L = [1, 1,−1,−1], sets with 3-term arithmetic progressions are the case L = [1,−2, 1],
etc. It is surprising that in such a general setting significant and strong results can be
found. Precisely this is done in [22,24,59].

9 Other open questions

If A∗ is bounded, is it necessarily 0 infinitely often? This is equivalent to a USD 500
question of Erdős [43]: If every positive integer can be written as a sum of two elements
of B ⊆ N (i.e., B is a base), must the number of ways to do so go to infinity?

Is there an anti-Freiman theorem: If |A+A|/|A|2 > c, then A has a large B∗
2 [g] subset,

where g and ‘large’ depend only c? This question may be related to the quasi-Sidon sets
discussed in [49,129].
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limd→∞ F2(2, 2, d)1/d =

√
2, and (3) Estimate F2(3, N, d).

This article cites [5], [18], [21], [19], [20], [3].

[24] J. Komlós, M. Sulyok, and E. Szemerédi, Linear problems in combinatorial number theory , Acta
Math. Acad. Sci. Hungar. 26 (1975), 113–121. MR 51:342

[25] P. Erdős, Some applications of Ramsey’s theorem to additive number theory , European J. Combin.
1 (1980), 43–46. MR 82a:10067

Erdős and Donald Newman conjectured (independently) that there is a B2[k] sequence
which is not the union of a finite number of B2 sequences. He notes that this follows
from Ramsey’s theorem. Erdős also conjectures that there is B∗

2 [2g] set A such that if
A = ∪n

i=1Ai, then some Ai is not a B∗
2 [2g − 2] set. This is proved explicitly for three

cases: (1) h = 2 and g = 1 (with A = {4i + 4j}); (2) g = 2s; and (3) g = 1
2

(
2s
s

)
with

s ≥ 1. He comments that he is unable to verify the conjecture with h = 2, g = 5.
Suppose that the cardinality of the continuum is > ℵ1. There is a set S ⊆ R with

cardinality ℵ2, S is a B∗
2 [4] set, and if S = ∪∞i=1Si, then some Si is not a B∗

2 [2] set.
Set L(g, n) to be the largest integer ` such that every B∗

2 [g] set with n elements
contains a Sidon subset with ` elements. He conjectures that L(g, n)/

√
n is unbounded

(as n → ∞), and speculates that L(g, n) = O (
n1/2+ε

)
for every ε > 0. He proves that

L(4, n) = O (
n3/4

)
and L(8, n) = O (

n2/3
)
.

This article cites [18], [24].

[26] R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Algebraic
Discrete Methods 1 (1980), 382–404. MR 82f:10067a

Author’s abstract: “This paper first considers several types of additive bases. A typical
problem is to find nγ(k), the largest n for which there exists a set {0 = a1 < a2 < · · · <
ak} of distinct integers modulo n such that each r in the range 0 ≤ r ≤ n − 1 can be
written at least once as r ≡ ai + aj (modulo n) with i < j. For example nγ(8) = 24,
as illustrated by the set {0, 1, 2, 4, 8, 13, 18, 22}. The other problems arise if at least is
changed to at most, or i < j to i ≤ j, of if the words modulo n are omitted. Tables
and bounds are given for each of these problems. Then a closely related graph labeling
problem is studied. A connected graph with n edges is called harmonious if it is possible
to label the vertices with distinct numbers (modulo n) in such a way that the edge
sums are also distinct (modulo n). Som infinite families of graphs (odd cycles, ladders,
wheels, · · · ) are shown to be harmonious while others (even cycles, most complete or
complete bipartite graphs, · · · ) are not. In fact most graphs are not harmonious. The
function nγ(k) is the size of the largest harmonious subgraph of the complete graph on
k vertices.”

[27] , On constant weight codes and harmonious graphs, Proceedings of the West Coast Conference
on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979),
Utilitas Math., Winnipeg, Man., 1980, pp. 25–40. MR 82f:10067b
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The authors apply the construction of [15] to bound the size of constant weight codes
and to harmonious graphs. A graph G = (V, E) is harmonious if it is possible to label the
|V | vertices with distinct values from Z|E| so that every element of Z|E| occurs uniquely
as an edge sum of G. The connection to Sidon sets is that A is Sidon set (modulo

(|A|
2

)
)

exactly if the vertices of the complete graph K|A| can be labeled (with distinct labels
from A) so that the edge sums are distinct.

[28] Miklós Ajtai, János Komlós, and Endre Szemerédi, A dense infinite Sidon sequence, European J.
Combin. 2 (1981), 1–11. MR 83f:10056

I haven’t seen this article, but references to it indicate that it contains a proof that there
is a Sidon set of positive integers with #(A ∩ [n]) À (n log n)1/3 for all large n. The
obvious pigeonhole bound gives only n1/3.

[29] Paul Erdős, Some of my favourite problems which recently have been solved , Proceedings of the Inter-
national Mathematical Conference, Singapore 1981 (Singapore, 1981), North-Holland, Amsterdam,
1982, pp. 59–79. MR 84f:10003

In §4, Erdős notes that the greedy Sidon sequence satisfies γk = O (
k3

)
, and recalls

his conjecture that in fact γk = o
(
k3

)
. The existence of a B∗

2 [2] sequence a1, a2, . . .

with ak = o
(
k3

)
was shown in [28], but their method does not give a sequence with

ak = o
(
k3−ε

)
for any ε > 0.

This article cites [18], [28].

[30] A. Sárközy, On squares in arithmetic progressions, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.
25 (1982), 267–272. MR 84j:10055

[31] Heini Halberstam and Klaus Friedrich Roth, Sequences, Second, Springer-Verlag, New York, 1983,
ISBN 0-387-90801-3. MR 83m:10094

From the preface: “Changes from the first edition [18] have been kept to a minimum.
Several misprints and some errors that have come to light in the years since the publica-
tion of the first edition have been corrected. At several places in the text, and in a short
postscript, we have added references to developments that have occurred since the first
appearance of Sequences.”

[32] A. G. D′yachkov and V. V. Rykov, Bs-sequences, Mat. Zametki 36 (1984), 593–601, English trans-
lation: Math. Notes 36 (1984), no. 3-4, 794–799. MR 86m:11016

I haven’t seen this article, but Zentralblatt 567:10041 indicates that it contains the
bounds

σ2h ≤ (sh(h!)2)1/2h, σ2h−1 ≤ (sh · h!(h− 1)!)1/2h−1

where s1 = 1, s2 = 2, s3 = 3 and sh =
√

125s/36 for h ≥ 4.

[33] P. Erdős and Róbert Freud, On disjoint sets of differences, J. Number Theory 18 (1984), 99–109.
MR 85g:11018

[34] Noga Alon and P. Erdős, An application of graph theory to additive number theory , European J.
Combin. 6 (1985), 201–203. MR 87d:11015

[35] László Babai and Vera T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, European
J. Combin. 6 (1985), 101–114. MR 87f:05081
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[36] P. Erdős, A. Sárközy, and V. T. Sós, Problems and results on additive properties of general sequences.
IV , Number Theory (Ootacamund, 1984), Springer, Berlin, 1985, pp. 85–104. MR 88i:11011a

[37] , Problems and results on additive properties of general sequences. V , Monatsh. Math. 102
(1986), 183–197. MR 88i:11011b

[38] Andrew D. Pollington, On the density of B2-bases, Discrete Math. 58 (1986), 209–211.
MR 87h:11013

A B2-base is a set for which every nonzero integer appears uniquely as a differ-
ence. Theorem 1: There is a B2-basis A (with counting function A(n)) for which
lim sup n−1/2A(n) ≥ 1

2 . Theorem 2: There exist B2-bases A for which A(n) >

(n log n)1/3/103 for all n > n0.

[39] I. E. Shparlinskĭı, On Bs-sequences, Combinatorial Analysis, No. 7 (Russian), Moskov. Gos. Univ.,
Moscow, 1986, pp. 42–45, 163. MR 89j:11008

[40] Benny Chor and Ronald L. Rivest, A knapsack-type public key cryptosystem based on arithmetic in
finite fields, IEEE Trans. Inform. Theory 34 (1988), 901–909. MR 89k:94043

The system is roughly as follows. Choose a prime power q around 200, h around 25,
k ∈ Fq, and a generator θ of the multiplicative group of Fqh . Publish Boseh(q, θ, k) in
sorted order a1 < · · · < ap as Alice’s public key. Bob can send a message to Alice by
first encoding it as a vector ~x of p nonnegative integers with sum h, and sending the sum
~x · 〈a1, . . . , ap〉. Alice can decode this by using her private information: θ and k. Their
are additional contortions recommended to disguise θ and k.

This knapsack cryptosystem was superior to earlier knapsacks in that there was
greater density, increasing the information per bit and fortifying against certain attacks.
The Chor-Rivest cryptosystem is simplified in [50] (and renamed the powerline cryp-
tosystem), and broken in [75] and [117] using LLL.

[41] D. Hajela, Some remarks on Bh[g] sequences, J. Number Theory 29 (1988), 311–323.
MR 90d:11022

[42] Xing De Jia, On the distribution of a B2-sequence, Qufu Shifan Daxue Xuebao Ziran Kexue Ban 14
(1988), 12–18. MR 89j:11023

[43] P. Erdős, Some old and new problems on additive and combinatorial number theory , Combinatorial
Mathematics: Proceedings of the Third International Conference (New York, 1985), New York Acad.
Sci., New York, 1989, pp. 181–186. MR 90i:11016

[44] Xing De Jia, On B6-sequences, Qufu Shifan Daxue Xuebao Ziran Kexue Ban 15 (1989), 7–11.
MR 90j:11022

[45] John C. M. Nash, On B4-sequences, Canad. Math. Bull. 32 (1989), 446–449. MR 91e:11025

[46] H. L. Abbott, Sidon sets, Canad. Math. Bull. 33 (1990), 335–341. MR 91k:11022

Author’s abstract: “Denote by g(n) be the largest integer m such that every set of
integers of size n contains a subset of size m whose pairwise sums are distinct. It is shown
that g(n) > cn1/2 for any constant c < 2

25 and all sufficiently large n.”

[47] J. Cilleruelo, B2-sequences whose terms are squares, Acta Arith. 55 (1990), 261–265. MR 91i:11023

A B2 sequence {a2
1, a

2
2, . . . , a

2
k, . . . } is constructed such that ak ¿ k2. The sequence

{a1, a2, . . . } is almost I = ∪∞j=1 = ∪∞j=1{a : 6j ≤ a < 6j + 6j/2, a ≡ 2 (mod 6)}, but
some elements needs to be removed.
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[48] P. Erdős, Some applications of probability methods to number theory. Successes and limitations,
Sequences (Naples/Positano, 1988), Springer, New York, 1990, pp. 182–194. MR 91d:11084

[49] P. Erdős and R. Freud, On sums of a Sidon-sequence, J. Number Theory 38 (1991), 196–205.
MR 92g:11028

This nicely written article begins with a proof that a Sidon subset of [n] with
√

n elements
is uniformly distributed as n → ∞. This is used to study how unbalanced the sumset
S = {ai + aj : ai, aj ∈ A} of a Sidon set A ⊆ [n] (not necessarily maximal) can be. They
show that #(S ∩ [n]) cannot be larger than n/π (as n → ∞), but can be as large as
n(1− 1/

√
2). This improves the trivial bounds of n/2 and n/4 to 0.318n and 0.293n.

The authors then consider a couple of generalizations of Sidon sets, the most inter-
esting being that of a quasi-Sidon sequence, i.e., a sequence of A integers whose sumset
S has cardinality (1+o (1))

(|A|
2

)
. Loosely, A∗(x) ≤ 2 for almost all integers x. They note

that a quasi-Sidon subset of [n] can have cardinality ∼
√

4n/3, but cannot have cardinal-
ity ∼ √

3.93n. Curiously, if one uses the “distinct difference” description of Sidon sets,
then the corresponding quasi-Sidon sets cannot be substantively larger than a classic
Sidon set.

[50] H. W. Lenstra Jr., On the Chor-Rivest knapsack cryptosystem, J. Cryptology 3 (1991), 149–155.
MR 92j:94012

Author’s abstract: “Among all public-key cryptosystems that depend on the knapsack
problem, the system proposed by B. Chor and R. L. Rivest [40] is one of the few that have
not been broken. The main difficulty in implementing their system is the computation of
discrete logarithms in large finite fields. In this note we describe the ‘powerline system’,
which is a modification of the Chor-Rivest system that does not have this shortcoming.
The powerline system, which is not a knapsack system, is at least as secure as the original
Chor-Rivest system.”

See also [75] and [117].

[51] An Ping Li, On B3-sequences, Acta Math. Sinica 34 (1991), 67–71. MR 92f:11037

[52] Vera T. Sós, An additive problem in different structures, Graph Theory, Combinatorics, Algo-
rithms, and Applications (San Francisco, CA, 1989), SIAM, Philadelphia, PA, 1991, pp. 486–510.
MR 92k:11026

[53] Torleiv Kløve, Constructions of Bh[g]-sequences, Acta Arith. 58 (1991), 65–78. MR 92f:11033

[54] Javier Cilleruelo and Antonio Córdoba, B2[∞]-sequences of square numbers, Acta Arith. 61 (1992),
265–270. MR 93g:11014

[55] Sheng Chen, On Sidon sequences of even orders, Acta Arith. 64 (1993), 325–330. MR 94h:11015

Let A(n) be the counting function of the B2k sequence A. Then

lim infn→∞A(n)
(

log n
n

)1/2k

< ∞. Chen conjectures that for all h ≥ 2, A a Bh

sequence, lim infn→∞A(n)
(

log n
n

)1/h

< ∞.

[56] Martin Helm, On B2k-sequences, Acta Arith. 63 (1993), 367–371. MR 95c:11029

[57] , Some remarks on the Erdős-Turán conjecture, Acta Arith. 63 (1993), 373–378.
MR 94c:11012

[58] Xing De Jia, On finite Sidon sequences, J. Number Theory 44 (1993), 84–92. MR 94k:11014
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Author’s abstract: “A set A of integers is called a Bh-sequence if all sums a1+ · · ·+ah,
where ai ∈ A, are distinct up to rearrangement of the summands. Let Fh(n) [resp. fh(n)]
denote the size of a largest Bh-sequence [resp. Bh-sequence for Z/(n)]. It is proved
that, for every r ≥ 1 as n → ∞, F2r(n) ≤ r1/2r(r!)1/rn1/2r + O(n1/4r), f2r(n) ≤
(r!)1/rn1/2r +O(n1/4r). Some open problems concerning Bh-sequences are also discussed
in this paper.”

Translating into the notation of this survey, that says σh ≤ (h/2 · ((h/2)!)2)1/h for even
h.

[59] Imre Z. Ruzsa, Solving a linear equation in a set of integers. I , Acta Arith. 65 (1993), 259–282.
MR 94k:11112

Fix integers a1, . . . , ak, b. Ruzsa considers sets S for which b =
∑

siai has no solutions
with si ∈ S with and without the stipulation that the si be distinct. Sum-free sets, 3-
term-AP-free sets [65, Problem E10], and Sidon sequences are some of the special cases
studied.

Ruzsa gives an interesting spin on the Erdős/Turàn [5] bound, giving R(2, n) ≤√
n+n1/4 +1 and R(3, n) ≤ √

n+4n1/4 +11. He also shows that {s ∈ [0, p(p−1)) : s ≡ i
(mod p− 1), s ≡ gi (mod p), g a primitive root} witnesses C(2, p(p− 1)) = p− 1.

He also shows that one may take at most (1 + o (1))h2−1/hn1/h numbers from [0, n)
such that the h-fold sums of distinct elements (up to rearrangements of the summands)
are distinct.

Part II is [74].

[60] Zhen Xiang Zhang, A B2-sequence with larger reciprocal sum, Math. Comp. 60 (1993), 835–839.
MR 93m:11012

Author’s abstract: “A sequence of positive integers is called a B2-sequence if the pair-
wise differences are all distinct. The Mian-Chowla sequence is the B2-sequence obtained
by the greedy algorithm. Its reciprocal sum S∗ has been conjectured to be the maximum
over all B2-sequences. In this paper we give a B2-sequence which disproves this conjec-
ture. Our sequence is obtained as follows: the first 14 terms are obtained by the greedy
algorithm, the 15th term is 229, from the 16th term on, the greedy algorithm continues.
The reciprocal sum of the first 300 terms of our sequence is larger than S∗.”

[61] Sheng Chen, On the size of finite Sidon sequences, Proc. Amer. Math. Soc. 121 (1994), 353–356.
MR 94h:11016

Author’s abstract: “Let h ≥ 2 be an integer. A set of positive integers B is called a
Bh-sequence, or a Sidon sequence of order h, if all sums a1 + a2 + · · ·+ ah, where ai ∈ B
(i = 1, 2, . . . , h), are distinct up to rearrangements of the summands. Let Fh(n) be the
size of the maximum Bh-sequence contained in {1, 2, . . . , n}. We prove that

F2r−1(n) ≤ ((r!)2n)1/(2r−1) +O
(
n1/(4r−2)

)
.

”

In the terminology of this survey, this is σh
h ≤ (dh/2e!)2 for odd h.

[62] Paul Erdős, Some problems in number theory, combinatorics and combinatorial geometry , Math.
Pannon. 5 (1994), 261–269. MR 95j:11018
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[63] P. Erdős, A. Sárközy, and T. Sós, On sum sets of Sidon sets. I, J. Number Theory 47 (1994), 329–
347. MR 95e:11030

This article gives bounds for the number of intervals in the sumset of a Sidon set. Define

B(A+A, d) := {s : s− d 6∈ A+A, s ∈ A+A},

and denote its counting function by B(A+A, d, n). The following theorems are proved:
Theorem 1: There is an absolute constant c1 > 0 such that for every finite Sidon set A
and integer d > 0,

|B(A+A, d)| > c1|A|2.
Theorem 2: There is an absolute constant c2 such that for every Sidon set A and integer
d > 0,

lim sup
N→∞

B(A+A, d, n)
A2(N)

> c2 > 10−7.

Theorem 3: For n > n0, there is a Sidon set in [n] whose sumset does not contain a gap
of length 3

√
n. Theorem 4: ∀ε > 0 there is a Sidon set (let s1 < s2 < . . . be its sumset)

and integer i0 such that ∀i > i0

si+1 − si < s
1
2
i (log si)

3
2+ε.

Theorem 5: There is an absolute constant c4 > 0 such that if A is a finite Sidon set with
|A| ≥ 2 and sumset s1 < s2 < · · · < su, then

max
1≤i<u

(si+1 − si) > c4 log |A|.

I remark that with a little care one may prove the inequality

|B(A+A, d)| ≥ 1
4 (|A|2 − |A| − 1)

in Theorem 1, and one may take c2 = 1
62 > 0.0162.

The paper concludes with some interesting open problems. Does the number of
“length one” intervals in the sumset of a finite Sidon set go to infinity as the size of
the set does? Does

1
t

t−1∑

i=1

(si+1 − si)2 →∞

where s1 < s2 < · · · < st is the sum set of a finite Sidon set? If A is a dense finite Sidon
set, must A+A be well-distributed w.r.t. small moduli?

[64] P. Erdős, A. Sárközy, and V. T. Sós, On additive properties of general sequences, Discrete Math.
136 (1994), 75–99, Trends in discrete mathematics. MR 96d:11014

Author’s abstract: “The authors give a survey of their papers on additive properties
of general sequences and they prove several further results on the range of additive
representation functions and on difference sets. Many related unsolved problems are
discussed.”

[65] Richard K. Guy, Unsolved problems in number theory , Second, Springer-Verlag, New York, 1994,
ISBN 0-387-94289-0, Unsolved Problems in Intuitive Mathematics, I. MR 96e:11002

[66] Martin Helm, A remark on B2k-sequences, J. Number Theory 49 (1994), 246–249. MR 96b:11024
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Author’s abstract: “Improving a result of Chen [A note on B2k-sequences, preprint]
in this paper we prove that

lim inf
n→∞

A(n)
n1/2k

(log n)1/(3k−1) < ∞

holds for every infinite B2k-sequence A.”

[67] Xing De Jia, On B2k-sequences, J. Number Theory 48 (1994), 183–196. MR 95d:11027

If A is a B2k sequence whose counting function satisfies A(n2) ¿ A(n)2, then

lim inf
n→∞

A(n)
2k
√

n/ log(n)
< ∞.

[68] Zhen Xiang Zhang, Finding finite B2-sequences with larger m− a
1/2
m , Math. Comp. 63 (1994), 403–

414. MR 94i:11109

The set (mBose2(p, θ, k) + r) ∪ {0} is a Sidon set modulo p2 − 1 provided p is a prime
power, θ generates the multiplicative group of Fp2 , 1 ≤ k < p, and gcd(m, p2 − 1) = 1.
This paper considers the algorithmic difficulties of computing

min
θ,r

max {Bose2(p, θ, 1) + r} ,

where Bose2(p, θ, 1) + r is reduced modulo p2 − 1. As an application of the algorithm,
it is noted that for p = 829, there are θ and r such that max {Bose2(p, θ, 1) + r} =
8292 − 16939, whence R(2, 670303) − √

670303 > 10. The algorithm is simplified and
made faster in [89].

[69] J. Cilleruelo, B2[g] sequences whose terms are squares, Acta Math. Hungar. 67 (1995), 79–83.
MR 95m:11032

[70] P. Erdős, A. Sárközy, and V. T. Sós, On sum sets of Sidon sets. II , Israel J. Math. 90 (1995),
221–233. MR 96f:11034

Author’s abstract: “It is proved that there is no Sidon set in [n] whose sumset contains
c1n

1/2 consecutive integers, but it may contain c2n
1/3 consecutive integers. Moreover,

it is shown that a finite Sidon set cannot be well-covered by generalized arithmetic
progressions.”

[71] Mihail N. Kolountzakis, An effective additive basis for the integers, Discrete Math. 145 (1995), 307–
313. MR 96m:11010

Author’s abstract: “We give an algorithm for the enumeration of a set E of nonnegative
integers with the property that each nonnegative integer x can be written as a sum of
two elements of E in at least C1logx and at most C2logx ways, where C1, C2 are positive
constants. Such a set is called a basis and its existence has been established by Erdős. Our
algorithm takes time polynomial in n to enumerate all elements of E not greater than
n. We accomplish this by derandomizing a probabilistic proof which is slightly different
than that given by Erdős.”

[72] Hanno Lefmann and Torsten Thiele, Point sets with distinct distances, Combinatorica 15 (1995),
379–408. MR 96h:52016
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[73] Carl Pomerance and András Sárközy, Combinatorial number theory , Handbook of Combinatorics,
Vol. 1, 2, Elsevier, Amsterdam, 1995, pp. 967–1018. MR 97e:11032

[74] Imre Z. Ruzsa, Solving a linear equation in a set of integers. II , Acta Arith. 72 (1995), 385–397.
MR 96j:11128

[75] C. P. Schnorr and H. H. Hörner, Attacking the Chor-Rivest cryptosystem by improved lattice reduc-
tion, Advances in Cryptology—EUROCRYPT ’95 (Saint-Malo, 1995), Lecture Notes in Comput.
Sci., vol. 921, Springer, Berlin, 1995, pp. 1–12. MR 96k:94014

Author’s abstract: “Summary: “We introduce algorithms for lattice basis reduction
that are improvements of the famous L3-algorithm. If a random L3-reduced lattice basis
b1, · · · , bn is given such that the vector of reduced Gram-Schmidt coefficients ({µi,j},
1 ≤ j < i ≤ n) is uniformly distributed in [0, 1)(

n
2), then the pruned enumeration finds

with positive probability a shortest lattice vector. We demonstrate the power of these
algorithms by solving random subset sum problems of arbitrary density with 74 and 82
weights, by breaking the Chor-Rivest cryptoscheme in dimensions 103 and 151 and by
breaking Damg̊ard’s hash function.””

This paper breaks the Chor-Rivest cryptosystem [40] with a few days computation. The
followup attack in [117] is more efficient.

[76] Joel Spencer and Prasad Tetali, Sidon sets with small gaps, Discrete Probability and Algorithms
(Minneapolis, MN, 1993), Springer, New York, 1995, pp. 103–109. MR 97g:05163

[77] Sheng Chen, A note on B2k sequences, J. Number Theory 56 (1996), 1–3. MR 97a:11035

Let A = {a1 < a2 < . . . } be a B2k sequence (k ≥ 2) with counting function A(n). Then

lim inf
n→∞

A(n)
n1/(2k)(log n)1/(4k−4)

< ∞

and
lim sup

n→∞
an

n2k
√

log n
= ∞.

[78] S. W. Graham, Bh sequences, Analytic Number Theory, Vol. 1 (Allerton Park, IL, 1995), Birkhäuser
Boston, Boston, MA, 1996, pp. 431–449. MR 97h:11019

[79] Martin Helm, On B3-sequences, Analytic Number Theory, Vol. 2 (Allerton Park, IL, 1995), Progr.
Math., vol. 139, Birkhäuser Boston, Boston, MA, 1996, pp. 465–469. MR 97d:11040

[80] , On the distribution of B3-sequences, J. Number Theory 58 (1996), 124–129.
MR 97d:11041

Author’s abstract: “An infinite set of natural numbers is called a B3-sequence if all
sums a1 + a2 + a3 with aj ∈ A and a1 ≤ a2 ≤ a3 are distinct. Let A(n) be the number
of positive elements ≤ n in A. P. Erdős conjectures that every B3-sequence A satisfies
lim infn→∞A(n)n−1/3 = 0. In this paper we prove that no sequence satisfying A(n) ∼
αn1/3 can be a B3-sequence. We also give other necessary conditions for a B3-sequence.”

[81] Xingde Jia, Bh[g]-sequences with large upper density, J. Number Theory 56 (1996), 298–308.
MR 96k:11009

The analysis in this article is flawed; see [105] for an explanation and correction.
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[82] Mihail N. Kolountzakis, The density of Bh[g] sequences and the minimum of dense cosine sums, J.
Number Theory 56 (1996), 4–11. MR 96k:11026

Author’s abstract: “A set E of integers is called a Bh[g] set if every integer can be
written in at most g different ways as a sum of h elements of E. We give an upper bound
for the size of a Bh[1] subset {n1, . . . , nk} of {1, . . . , n} whenever h = 2m is an even
integer:

k ≤ (m(m!)2)1/hn1/h +O
(
n1/2h

)
.

For the case h = 2 (h = 4) this has already been proved by Erdős and Turán (by Lind-
ström). It has been independently proved for all even h by Jia who used an elementary
combinatorial argument. Our method uses a result, which we prove, related to the min-
imum of dense cosine sums which roughly states that if 1 ≤ λ1 < · · · < λN ≤ (2 − ε)N
are N different integers then

∣∣∣∣∣min
x

N∑
1

cosλjx

∣∣∣∣∣ ≥ Cε2N.

Finally we exhibit some dense finite and infinite B2[2] sequences.”

[83] , Problems in the additive number theory of general sets, I: sets with distinct sums (1996), 15
pages, unpublished.

This delightful review of problems—including for each a summary of what’s known and
an outline of how it is known—is a must-read for researchers in the area. The three
sections are entitled “Finite Bh[g] sets”, “Infinite Bh[g] sets with large lower density”,
and “Infinite Bh[g] with large upper density”.

[84] , Some applications of probability to additive number theory and harmonic analysis, Number
Theory (New York, 1991–1995), Springer, New York, 1996, pp. 229–251. MR 98i:11061

Author’s abstract: “We present some applications of the probabilistic method in ad-
ditive number theory and harmonic analysis. We describe two general approaches to the
probabilistic construction of certain objects. The question of whether one can actually
“construct” these is also discussed and several examples of “derandomized” probabilistic
proofs are given.”

[85] Imre Z. Ruzsa, Sumsets of Sidon sets, Acta Arith. 77 (1996), 353–359. MR 97j:11013

This paper follows [63, 70] in the consideration of the length of the longest interval
contained in the sumset of a Sidon set, and the length of the longest interval not contained
in A. For example, a set A ⊆ [n] is given such that A+A contains an interval of length
c
√

n, showing that this is the correct size up to the constant factor.

[86] A. Sárközy and V. T. Sós, On additive representation functions, The Mathematics of Paul Erdős, I,
Springer, Berlin, 1997, pp. 129–150. MR 97m:11019

[87] Béla Bajnok, Constructions of spherical 3-designs, Graphs Combin. 14 (1998), 97–107.
MR 99f:05020
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Author’s abstract: “Spherical t-designs are Chebyshev-type averaging sets on the d-
sphere Sd ⊂ Rd+1 which are exact for polynomials of degree at most t. This concept
was introduced in 1977 by Delsarte, Goethals, and Seidel, who also found the minimum
possible size of such designs, in particular, that the number of points in a 3-design on
Sd must be at least n ≥ 2d + 2. In this paper we give explicit constructions for spherical
3-designs on Sd consisting of n points for d = 1 and n ≥ 4; d = 2 and n = 6, 8,≥ 10;
d = 3 and n = 8,≥ 10; d = 4 and n = 10, 12,≥ 14; d ≥ 5 and n ≥ 5(d + 1)/2 odd or
n ≥ 2d+2 even. We also provide some evidence that 3-designs of other sizes do not exist.
We will introduce and apply a concept from additive number theory generalizing the
classical Sidon-sequences. Namely, we study sets of integers S for which the congruence
ε1x1 + ε2x2 + · · ·+ εtxt ≡ 0 mod n, where εi = 0, ±1 and xi ∈ S (i = 1, 2, . . . , t), only
holds in the trivial cases. We call such sets Sidon-type sets of strength t, and denote their
maximum cardinality by s(n, t). We find a lower bound for s(n, 3), and show how Sidon-
type sets of strength 3 can be used to construct spherical 3-designs. We also conjecture
that our lower bound gives the true value of s(n, 3) (this has been verified for n ≤ 125).”

[88] D. Frank Hsu and Xingde Jia, Some nonexistence results on perfect addition sets, Proceedings of the
Twenty-Ninth Southeastern International Conference on Combinatorics, Graph Theory and Com-
puting (Boca Raton, Fl, 1998), vol. 134, 1998, pp. 131–137. MR 2000a:11021

[89] Bernt Lindström, Finding finite B2-sequences faster, Math. Comp. 67 (1998), 1173–1178.
MR 98m:11012

Lindström shows that for any two generators θ, θ′ of Fp2 (p an odd prime power), there
is an m and an r such that

Bose2(p, θ, 1) = m Bose2(p, θ′, 1)− r.

In other words, varying the generator does not generate “new” Bose sets. (It is easy
to extend this to show the uselessness of varying k in Bose2(p, θ, k).) He also gives a
criterion (in terms of u and v) for the existence of a generator θ satisfying θ2 = uθ + v.
These two results greatly improve the efficiency of Zhang’s algorithm [68].

[90] , Well distribution of Sidon sets in residue classes, J. Number Theory 69 (1998), 197–200.
MR 99c:11021

Author’s abstract: “A set A of non-negative integers is a Sidon set if the sums a + b
(a, b ∈ A, a ≤ b) are distinct. Assume that a ⊆ [1, n] and that |A| = (1 + o (1)))n1/2.
Let m ≥ 2 be an integer. In Theorem 1 I prove that asymptotically 1/m of all elements
in A fall into each residue class modulo m. When m = 2 I prove a sharper result in
Theorem 2. Assume that |A| ≥ n1/2. Then the difference between the number of odd
and the number of even elements in A is O (

n3/8
)
. If the interval [1, n] is divided into

m equal parts and the number of elements from A in each part is counted, then similar
results hold for these counts.”

[91] Imre Z. Ruzsa, An infinite Sidon sequence, J. Number Theory 68 (1998), 63–71. MR 99a:11014

Author’s abstract: “We show the existence of an infinite Sidon sequence such that the
number of elements in [1, N ] is N

√
2−1+o(1).”

[92] , A small maximal Sidon set, Ramanujan J. 2 (1998), 55–58, Paul Erdős (1913–1996).
MR 99g:11026
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Author’s abstract: “We construct a Sidon set A ⊂ [1, N ] which has ¿ (N log N)1/3

elements and which is maximal in the sense that the inclusion of any other integer from
[1, N ] destroys the Sidon property.”

[93] Andreas Baltz, Tomasz Schoen, and Anand Srivastav, Probabilistic construction of small strongly
sum-free sets via large Sidon sets, Randomization, Approximation, and Combinatorial Optimization
(Berkeley, CA, 1999), Lecture Notes in Comput. Sci., vol. 1671, Springer, Berlin, 1999, pp. 138–143.
MR 2001e:68137

[94] Anant P. Godbole, Svante Janson, Nicholas W. Locantore Jr., and Rebecca Rapoport, Random Sidon
sequences, J. Number Theory 75 (1999), 7–22. MR 2000c:11031

Author’s abstract: “A subset A of the set [n] = {1, 2, . . . , n}, |A| = k is said to form a
Sidon (or Bh) sequence h ≥ 2, if each of the sums a1 + a2 + · · ·+ ah, a1 ≤ a2 ≤ · · · ≤ ah;
ai ∈ A, are distinct. We investigate threshold phenomena for the Sidon property, showing
that if An is a random subset of [n], then the probability that An is a Bh sequence tends
to unity as n → ∞ if kn = |An| ¿ n1/2h, and that P(An is Sidon) → 0 provided that
kn À n1/2h. The main tool employed is the Janson exponential inequality. The validity
of the Sidon property at the threshold is studied as well. We prove, using the Stein-
Chen method of Poisson approximation, that P(An is Sidon) → exp−λ (n → ∞) if
kn ∼ Λ · n1/2h (Λ ∈ R+), where λ is a constant that depends in a well-specified way on
Λ. Multivariate generalizations are presented.”

[95] Mihail N. Kolountzakis, On the uniform distribution in residue classes of dense sets of integers with
distinct sums, J. Number Theory 76 (1999), 147–153. MR 2000a:11028

Author’s abstract: “A set A ⊆ {1, . . . , N} is of the type B2 if all sums a+b, with a ≥ b,
a, b ∈ A, are distinct. It is well known that the largest such set is of size asymptotic to
N1/2. For a B2 set A of this size we show that, under mild assumptions on the size of the
modulus m and on the difference N1/2 − |A| (these quantities should not be too large),
the elements of A are uniformly distributed in the residue classes mod m. Quantitative
estimates on how uniform the distribution is are also provided. This generalizes recent
results of Lindström whose approach was combinatorial. Our main tool is an upper bound
on the minimum of a cosine sum of k terms,

∑k
1 cos λjx, all of whose positive integer

frequencies j are at most (2− ε)k in size. ”

[96] B. Lindström, Primitive quadratics reflected in B2-sequences, Portugal. Math. 56 (1999), 257–263.
MR 2000j:11029

[97] Bernt Lindström, Computing B3-sequences, Proceedings of the Seventh Nordic Combinatorial Con-
ference (Turku, 1999), Turku Cent. Comput. Sci., Turku, 1999, pp. 65–68. MR 2000k:11027

[98] Imre Z. Ruzsa, Erdős and the integers, J. Number Theory 79 (1999), 115–163. MR 2002e:11002

A brief recounting of the state-of-the-art on several aspects of Sidon sets.

[99] Andreas Baltz, Tomasz Schoen, and Anand Srivastav, Probabilistic construction of small strongly
sum-free sets via large Sidon sets, Colloq. Math. 86 (2000), 171–176. MR 2001k:05197

[100] T. Banakh, O. Verbitsky, and Ya. Vorobets, A Ramsey treatment of symmetry, Electron. J. Combin.
7 (2000), Research Paper 52, 25 pp. (electronic). MR 2001m:05255
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Author’s abstract: “Given a space Ω endowed with symmetry, we define ms(Ω, r) to
be the maximum of m such that for any r-coloring of Ω there exists a monochromatic
symmetric set of size at least m. We consider a wide range of spaces Ω including the
discrete and continuous segments {1, . . . , n} and [0, 1] with central symmetry, geometric
figures with the usual symmetries of Euclidean space, and Abelian groups with a natu-
ral notion of central symmetry. We observe that ms({1, . . . , n}, r) and ms([0, 1], r) are
closely related, prove lower and upper bounds for ms([0, 1], 2), and find asymptotics of
ms([0, 1], r) for r increasing. The exact value of ms(Ω, r) is determined for figures of revo-
lution, regular polygons, and multi-dimensional parallelopipeds. We also discuss problems
of a slightly different flavor and, in particular, prove that the minimal r such that there
exists an r-coloring of the k-dimensional integer grid without infinite monochromatic
symmetric subsets is k + 1.”

[101] Javier Cilleruelo, An upper bound for B2[2] sequences, J. Combin. Theory Ser. A 89 (2000), 141–
144. MR 2001d:11026

Cilleruelo gives a combinatorial proof that R(4, n) ≤ √
6n + 1, whence σ2(4) ≤ √

3.

[102] , Gaps in dense Sidon sets, Integers 0 (2000), Paper A11, 6pp. (electronic).
MR 2001m:11129

Author’s abstract: “We prove that if A ⊂ [1, N ] is a Sidon set with N1/2−L elements,
then any interval I ⊂ [1, N ] of length cN contains c|A|+ EI elements of A, with |EI | ≤
52N1/4(1 + c1/2N1/8)(1 + L

1/2
+ )N−1/8, L+ = max{0, L}. In particular, if |A| = N1/2 +

O (
N1/4

)
, and g(A) is the maximum gap in A, we deduce that g(A) ¿ N3/4. We also

prove that, under this condition, the exponent 3/4 is sharp.”

[103] Javier Cilleruelo and Jorge Jiménez-Urroz, Bh[g] sequences, Mathematika 47 (2000), 109–115
(2002). MR 1924491

Author’s abstract: “We give new upper and lower bounds for Fh(g, N), the maximum
size of a Bh[g] sequence contained in [1, N ]. We prove

Fh(g,N) ≤ (
√

3hh!gN)1/h,

and for any ε > 0 and g > g(ε, h),

Fh(g, N) ≥
(

(1− ε)
√

π

6

√
hgN

)1/h

+ o (() N1/h).

”

This means that σh(h!g) ≤ (h!
√

3h)1/h (an improvement for h > 7) and
lim infg→∞ σh(h!g)h−1/(2h) ≥

√
π/6.

[104] B. Lindström, A translate of Bose-Chowla B2-sets, Studia Sci. Math. Hungar. 36 (2000), 331–333.
MR 2001j:11005

[105] Bernt Lindström, Bh[g]-sequences from Bh-sequences, Proc. Amer. Math. Soc. 128 (2000), 657–659.
MR 2000e:11022

If A is a Bh set and B = {0, 1, . . . , m}, then

mA+ B = {ma + b : a ∈ A, b ∈ B}
is a Bh[g] set. Consequently, Rh(h!mh−1, n) ≥ (mh−1n)1/h(1 + o (1)).

This is the same construction of [81], but here it is analyzed correctly.
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[106] Melvyn B. Nathanson, N -graphs, modular Sidon and sum-free sets, and partition identities, Ra-
manujan J. 4 (2000), 59–67. MR 2001c:05011

Author’s abstract: “Using a new graphical representation for partitions, the author
obtains a family of partition identities associated with partitions into distinct parts of an
arithmetic progression, or, more generally, with partitions into distinct parts of a set that
is a finite union of arithmetic progressions associated with a modular sum-free Sidon set.
Partition identities are also constructed for sets associated with modular sum-free sets.”

[107] Oriol Serra and Gilles Zémor, On a generalization of a theorem by Vosper, Integers 0 (2000), Paper
A10, 10 pp. (electronic). MR 2001f:11178

Author’s abstract: “Let S, T be subsets of Z/pZ with min{|S|, |T |} > 1. The Cauchy-
Davenport theorem states that |S + T | ≥ min{p, |S| + |T | − 1}. A theorem by Vosper
characterizes the critical pair in the above inequality. We prove the following general-
ization of Vosper’s theorem. If |S + T | ≤ min{p − 2, |S| + |T | + m}, 2 ≤ |S|, |T |, and
|S| ≤ p − (

m+4
2

)
, then S is a union of at most m + 2 arithmetic progressions with the

same difference. The term
(
m+4

2

)
is best possible, i.e. cannot be replaced by a smaller

number. ”

[108] H. Taylor and G. S. Yovanof, B2-sequences and the distinct distance constant, Comput. Math. Appl.
39 (2000), 37–42, Sol Golomb’s 60th Birthday Symposium (Oxnard, CA, 1992). MR 2001j:11007

Author’s abstract: “A sequence of positive integers 1 < α1 < α2 < . . . with the
property that all differences αj − αi, i < j are distinct is called a B2-sequence. De-
note by DDC (distinct difference constant) the maximum over all possible B2-sequences
of the sum

∑
(1/αi). Previously known upper and lower bounds for the DDC are

2.1597 < DDC < 2.374. We have estimated the following sharper bounds on DDC:
2.1600383 < DDC < 2.2473. We have further proved that any B2-sequence which
achieves the maximum reciprocal sum must start with the terms 1, 2, 4.”

[109] Peter J. Cameron and Paul Erdős, Notes on sum-free and related sets, Recent Trends in Combina-
torics (Mátraháza, 1995), Cambridge Univ. Press, Cambridge, 2001, pp. 95–107. MR 2000c:05144

Fix h and g, and Let fmax(n) be the number of maximal B∗
h[g] sets contained in [n].

Then lim supn→∞ fmax(n) = ∞.

[110] Javier Cilleruelo, New upper bounds for finite Bh sequences, Adv. Math. 159 (2001), 1–17.
MR 2002g:11023

σ3 ≤
(

4
1 + ( 2

π+2 )4

)1/3

< 1.576,

σ4 ≤
(

8
1 + ( 2

π+2 )4

)1/4

< 1.673.

For 3 ≤ m < 38

σ2m−1 ≤
(

(m!)2

1 + cos2m(π/m)

)1/(2m−1)

,

σ2m ≤
(

m(m!)2

1 + cos2m(π/m)

)1/(2m)

.
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For 38 ≤ m

σ2m−1 ≤
(

5
2

(
15
4
− 5

4m

)1/4 (m!)2√
m

)1/(2m−1)

,

σ2m ≤
(

5
2

(
15
4
− 5

4m

)1/4√
m(m!)2

)1/(2m)

.

[111] Javier Cilleruelo and Carlos Trujillo, Infinite B2[g] sequences, Israel J. Math. 126 (2001), 263–267.
MR 2003d:11032

Author’s abstract: “We exhibit, for any integer g ≥ 2, an infinite sequence A ∈ B2[g]
such that lim supx→∞A(x)x−1/2 = 3

2
√

2

√
g − 1. In addition, we obtain better estimates

for small values of g. For example, we exhibit an infinite sequences A ∈ B2[2] such that
lim supx→∞A(x)x−1/2 =

√
3/2.”

[112] Gérard Cohen, Simon Litsyn, and Gilles Zémor, Binary B2-sequences: a new upper bound, J. Com-
bin. Theory Ser. A 94 (2001), 152–155. MR 2002a:94019

Author’s abstract: “We show that the maximum size of a B2-sequence of binary n-
vectors for large enough n is at most 20.5753n, thus improving on the previous bound
20.6n due to B. Lindström.”

[113] Ben Green, The number of squares and Bh[g] sets, Acta Arith. 100 (2001), 365–390.
MR 2003d:11033

This paper contains a substantial jump in sophisticatedness-of-technique over essentially
all earlier work on the density of finite B∗

h[g] sets. The techniques used in [118] to get
upper bounds are incorporated and extended.

The central problem here is to bound

M(n) := inf
f :[n]→R,

P
f(x)=n

∑

a+b=c+d

f(a)f(b)f(c)f(d).

As the summation has 3 degrees of freedom, it is not surprising that there are positive
constants c1, c2 with c1n

3 . M(n) . c2n
3. Green shows that we may take c1 = 4/7 and

c2 = 0.64074. He also shows that the infimum is obtained for a unique function f , and
(f ◦ f) ◦ f(x) is constant for x ∈ [n].

A substantive amount of additional work gives the bounds

σ3 ≤ (7/2)1/3 < 1.519

σ4 ≤ 71/4 < 1.627

σ2h((2h)!) ≤ π1/2h1/2(h!)2(1 + ε(h))/((2h)!)

σ2h−1((2h− 1)!) ≤ π1/2h−1/2(h!)2(1 + ε(h))/((2h− 1)!).

The function ε(h) tends to 0 as h → ∞, but it is not computed explicitly. Also, Green
shows that σ2(g) ≤ 7/4(1− 1/g) and σ2(g) ≤ 1.6999.

While the main theorems are proven in full detail, but there are number of comments
about generalizations that are neither proven nor straightforward.

[114] Alain Plagne, A new upper bound for B2[2] sets, J. Combin. Theory Ser. A 93 (2001), 378–384.
MR 2001k:11035
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σ2(4) ≤ 1.67131.

[115] , Recent progress on finite Bh[g] sets, Proceedings of the Thirty-Second Southeastern In-
ternational Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001),
vol. 153, 2001, pp. 49–64. MR 2003a:05146

[116] I. Z. Ruzsa, An almost polynomial Sidon sequence, Studia Sci. Math. Hungar. 38 (2001), 367–375.
MR 2002k:11030

There is a real number α and integer n0 such that {n5 +
⌊
αn4

⌋
: n > n0} is a Sidon set.

[117] Serge Vaudenay, Cryptanalysis of the Chor-Rivest Cryptosystem, Journal of Cryptology 14 (January
2001), 87 –100.

Author’s abstract: “Knapsack-based cryptosystems used to be popular in the begin-
ning of public key cryptography before all but the ChorRivest cryptosystem being broken.
In this paper we show how to break this one with its suggested parameters: F19724 and
F25625 . We also give direction on possible extensions of our attack.”

[118] Javier Cilleruelo, Imre Z. Ruzsa, and Carlos Trujillo, Upper and lower bounds for finite Bh[g]
sequences, J. Number Theory 97 (2002), 26–34. MR 2003i:11033

This nine page article inaugurated the modern era of Sidon-set research, containing
significant advances in dealing with both g and h in getting both upper and lower bounds.
In many cases, this was the first progress over the trivial bounds. The results here have all
received substantial further refinement and generalization. We note that this article was
submitted 31 months before publication, and the preprint was influencing other workers
as early as 2000.

They prove that R2(2g, n) ≤ 1.319(2gn)1/2 + 1 and, whence σ2(2g) ≤ 1.319. They
prove that σ2(2g) ≥ g+bg/2c√

g2+2gbg/2c , whence σ2(4) ≥
√

3/2 > 1.224. For h > 2, they prove

that Rh(h!g, n) ≤ (h(h!)2gN)1/h

(1+cosh(π/h))1/h , whence

σh(h!g)h ≤ h(h!)2

1 + cosh(π/h)
.

[119] Laurent Habsieger and Alain Plagne, Ensembles B2[2]: l’étau se resserre, Integers 2 (2002), Paper
A2, 20 pp. (electronic). MR 2002m:11010 (French)

Author’s abstract: “Let F2(N, 2) denote the maximal cardinality of any B2[2] set
included in {1, 2, . . . , N} It is a well known fact that the ratio F2(N, 2)/

√
N (N ≥ 1)

is bounded from below and from above by two positive constants. However, one still
ignores whether this quantity has a limit as N tends toward infinity. This explains the
huge amount of work that was produced in order to improve the best lower and upper
asymptotic bounds for F2(N, 2)/

√
N . In this paper, we obtain the following asymptotic

bounds
4√
7

. F2(N, 2)√
N

< 2.3218 . . . .

”

[120] Tomasz Schoen, The distribution of dense Sidon subsets of Zm, Arch. Math. (Basel) 79 (2002),
171–174. MR 2003f:11022
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Author’s abstract: “Let S ⊆ Zm be a Sidon set of cardinality |S| = m1/2 + O (1). It
is proved, in particular, that for any interval I = {a, a + 1, . . . , a + `− 1} in Zm, 0 ≤ ` ¡
m, we have ||S ∩ I| − |S|`/m| = O (|S|1/2 log m

)
.”

[121] David R. Wood, On vertex-magic and edge-magic total injections of graphs, Australas. J. Combin.
26 (2002), 49–63. MR 2003e:05121

Author’s abstract: “The study of graph labellings has focused on finding classes of
graphs which admit a particualr type of labelling. Here we consider variations of the
well-known edge-magic and vertex-magic total labellings for which all graphs admit such
a labelling. In particular, we consider two types of injections of the vertices and edges
of a graph with positive integers: (1) for every edge the sum of its label and those of its
end-vertices is some magic constant (edge-magic); and (2) for every vertex the sum of its
label and those of the edges incident to it is some magic constant (vertex-magic). Our aim
is to minimise the maximum label or the magic constant associated with the injection.
We present upper bounds on these parameters for complete graphs, forests and arbitrary
graphs, which in a number of cases are within a constant factor of being optimal. Our
results are based on greedy algorithms for computing an antimagic injection, which is
then extended to a magic total injection. Of independent interst is our result that every
forest has an edge-antinmagic vertex labelling.”

[122] M. Chateauneuf, A. C. H. Ling, and D. R. Stinson, Slope packings and coverings, and generic
algorithms for the discrete logarithm problem, J. Combin. Des. 11 (2003), 36–50. MR 2003j:05035

[123] Fan Chung, Paul Erdős, and Ronald Graham, On sparse sets hitting linear forms, Number
Theory for the Millennium, I (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 257–272.
MR 2003k:11012

[124] Béla Bollobás and Oleg Pikhurko, Integer Sets with Prescribed Pairwise Differences Being Distinct,
January 19, 2004, The website http://www.math.cmu.edu/ pikhurko/Papers/index.html links to the
preprint, which it notes as “to appear in Europ J Comb.”

Author’s abstract: “We label the vertices of a given graph G with positive integers
so that the pairwise differences over its edges are all distinct. Let D(G) be the smallest
value that the largest label can have.

For example, for the complete graph Kn, the labels must form a Sidon set. Hence
D(Kn) = (1 + o (1))n2. Rather surprisingly, we demonstrate that there are gaphs with
only n3/2+o(1) edges achieving this bound.

More generally, we study the maximum value of D(G) that a graph G of the given
order n and size m can have. We obtain bounds which are sharp up to a logarithmic
multiplicative factor. The analogous problem for pairwise sums is considered as well. Our
results, in particular, disprove a conjecture of Wood.”

[125] M. Helm, Upper bounds for B2[g]-sets, unpublished.

I have not seen this article, but it reportedly contains a proof that R(4, n) ≤ √
6n+O (1).

[126] Greg Martin and Kevin O’Bryant, Continuous Ramsey theory and Sidon sets, 2002,
arXiv:math.NT/0210041.
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Author’s abstract: “A symmetric subset of the reals is one that remains invariant
under some reflection x 7→ c − x. Given 0 < ε ≤ 1, there exists a real number ∆(ε)
with the following property: if 0 ≤ δ < ∆(ε), then every subset of [0, 1] with measure ε
contains a symmetric subset with measure δ, while if δ > ∆(ε), then there exists a subset
of [0, 1] with measure ε that does not contain a symmetric subset with measure δ. In this
paper we establish upper and lower bounds for ∆(ε) of the same order of magnitude: for
example, we prove that ∆(ε) = 2ε− 1 for 11

16 ≤ ε ≤ 1 and that 0.59ε2 < ∆(ε) < 0.8ε2 for
0 < ε ≤ 11

16 .
This continuous problem is intimately connected with a corresponding discrete prob-

lem. A set S of integers is called a B∗[g] set if for any given m there are at most g
ordered pairs (s1, s2) ∈ S × S with s1 + s2 = m; in the case g = 2, these are better
known as Sidon sets. We also establish upper and lower bounds of the same order of
magnitude for the maximal possible size of a B∗[g] set contained in {1, . . . , n}, which
we denote by R(g, n). For example, we prove that R(g, n) < 1.31

√
gn for all n ≥ g ≥ 2,

while R(g, n) > 0.79
√

gn for sufficiently large integers g and n.
These two problems are so interconnected that both continuous and discrete tools can

be applied to each problem with surprising effectiveness. The harmonic analysis methods
and inequalities among various Lp norms we use to derive lower bounds for ∆(ε) also
provide uniform upper bounds for R(g, n), while the techniques from combinatorial and
probabilistic number theory that we employ to obtain constructions of large B∗[g] sets
yield strong upper bounds for ∆(ε).”

[127] , Constructions of Generalized Sidon Sets, August 5, 2004, http://www.math.ubc.ca/
∼gerg/.

Author’s abstract: “We give explicit constructions of sets S with the property that
for each integer k, there are at most g solutions to k = s1 + s2, ai ∈ S; such sets are
called Sidon sets if g = 2 and generalized Sidon sets if g ≥ 3. We extend to general-
ized Sidon sets the Sidon-set constructions of Singer, Bose, and Ruzsa. We also further
optimize Koulantzakis’ idea of interleaving several copies of a Sidon set, extending the
improvements of Cilleruelo & Ruzsa & Trujillo, Jia, and Habsieger & Plagne.”

[128] Melvyn Nathanson, On the ubiquity of Sidon sets, May 1, 2003, arXiv:math.NT/0304496.

Author’s abstract: “It is proved that almost all small subsets of [n] are B2[g] sets, in
the sense that if B2[g](k, n) denotes the number of B2[g] sets of cardinality k contained
in the interval [n], then limn→∞B2[g](k, n)/

(
n
k

)
= 1 if k = o

(
ng/(2g+2)

)
.”

[129] Oleg Pikhurko, Dense edge magic graphs and thin additive bases, November 8, 2003, http://www.
dpmms.cam.ac.uk/∼oleg/Papers/EdgeMagic.ps.

Author’s abstract: “A graph G of ornder n and size m is edge-magic if there is a
bijection ` : V (G) ∪ E(G) → [n + m] such that all sums `(a) + `(b) + `(ab), ab ∈ E(G),
are the same. We present new lower and upper bounds on M(n), the maximum size of
an edge-magic graph of order n, being the first to show an upper bound of the form
M(n) ≤ (1 − ε)

(
n
2

)
. Concrete estimates for ε can be obtained by knowing s(k, n), the

maximum number of distinct pairwise sums that a k-subset of [n] can have.
So, we also study s(k, n), motivated by the above connections to edge-magic graphs

and by the fact that a few known functions from additive number theory can be expressed
via s(k, n). For example, our estimate

s(k, n) ≤ n + k2

(
1
4
− 1

(π + 2)2
+ o (1)

)
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implies new bounds on the maximum size of quasi-Sidon sets, a problem pose by Erdős
and Freud [49]. The related problem for differences is considered as well.”
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