Heegaard splittings and virtual fibers

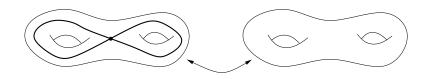
Joseph Maher

April 2005

Thm: Let M be a closed hyperbolic 3-manifold, with a sequence of finite covers of bounded Heegaard genus. Then M is virtually fibered.

• hyperbolic: $M = \mathbb{H}^3/\Gamma$, $G < \mathrm{Isom}(\mathbb{H}^3)$ discrete cocompact

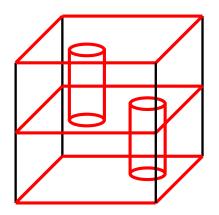
• Heegaard splitting: $M = H_1 \cup H_2$, $H_i =$ handlebody:



• fibered: $M_{\phi} = S \times I / \sim$, $(x, 1) \sim (\phi(x), 0)$

virtually fibered: some finite cover is fibered
Thm: [Lackenby] as above for regular covers

Cyclic covers of fibered manifolds have bounded Heegaard genus.



Thm: M closed hyperbolic 3-manifold with a sequence of finite covers with

- bounded Scharlemann-Thompson width
- Heegaard gradient $\chi_i/d_i \rightarrow 0$

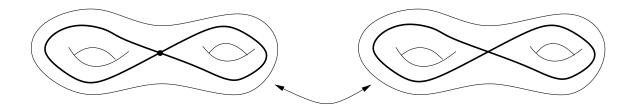
then all but finitely many M_i are fibered over $S^1 \mbox{ or } I^\ast$

Independently announced by Agol

Lackenby, using [Lubotzky, Sarnack] showed Heegaard genus grows linearly in congruence covers $\Gamma \rightarrow PSL(2, \mathbb{F}_q)$ of arithmetic manifolds

[Lubotzky] subgroup growth exponential, proportion of congruence covers \rightarrow 0 as index $\rightarrow\infty$

Proof: Sweepouts: $f: S \times I \to M$, $f_*: H_3(S \times I, \partial) \to H_3(M, \Gamma)$



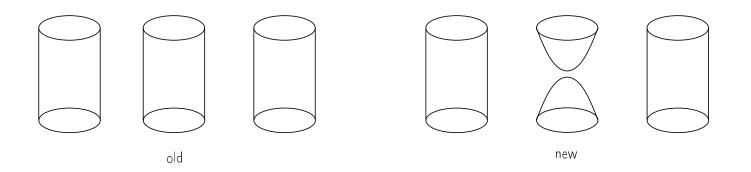
Simplicial sweepouts [Bachman, Cooper, White]:

continuous family of triangulations, with bounded number of triangles

straighten triangles in hyperbolic metric

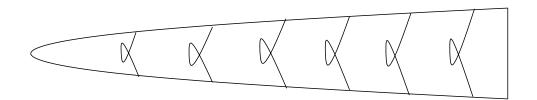
get immersed surfaces with area bound

Generalised sweepouts: $f : \Sigma \to M$ degree 1, $h : \Sigma \to \mathbb{R}$ Morse function



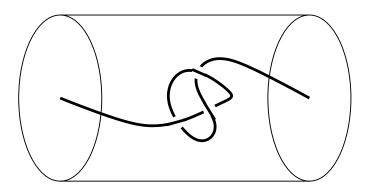
Get immersed surfaces with diameter bound

For M_i of large degree there is a handlebody in M_i with many disjoint nested sweepout surfaces.

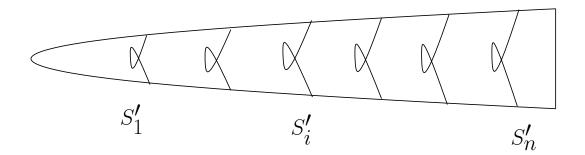


Assume surfaces have the same genus

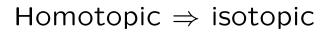
Nested \Rightarrow homotopic, use compressing discs

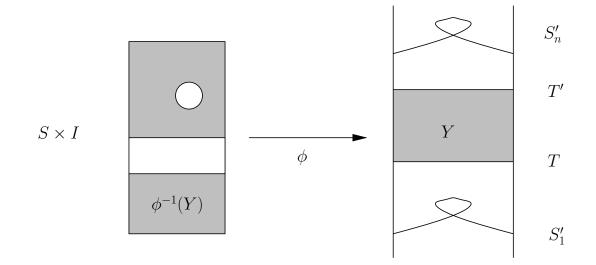


Replace surfaces S_i with S'_i so that the homotopy from S'_n to S'_i is disjoint from S'_j for j < i.

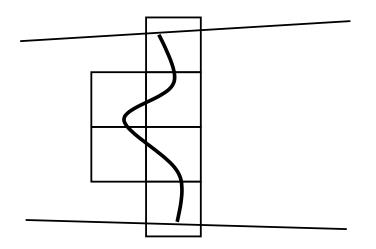


[Gabai] Singular norm \Rightarrow embedded surfaces





 $\mathsf{Finiteness} \Rightarrow \mathsf{virtual} \ \mathsf{fiber}$



6