Random walks on the mapping class group

arXiv:math.GT/0604433

Joseph Maher, UQAM

$\boldsymbol{\Sigma}$ closed orientable surface

Def: $G = MCG(\Sigma)$ = Diff⁺(Σ)/Diff₀(Σ)

Let Γ be a Cayley graph for G, consider nearest neighbour random walk on Γ

[Thurston] Classification of elements of G:

- Periodic
- Reducible
- Pseudo-Anosov

Thm: Let w_n be a random walk of length n, then $\mathbb{P}(w_n \text{ is pseudo-Anosov}) \to 1 \text{ as } n \to \infty$

cf [Rivin, math.NT/0604489, Rivin-I. Kapovich]

More generally, pick probability distibution μ on G, Markov chain with $p(x,y) = \mu(x^{-1}y)$

Require:

- μ symmetric, i.e. $\mu(x) = \mu(x^{-1})$
- $supp(\mu)$ non-elementary
- $supp(\mu)$ not contained in a centralizer

Example: $supp(\mu) = Torelli group$

[Masur-Minsky] G is weakly relatively hyperbolic

i.e. cone off cosets of subgroups H_i to produce relative space $\widehat{\Gamma}$

 $\widehat{\Gamma}$ quasi-isometric to complex of curves, δ -hyperbolic

|x| distance in Γ $|\hat{x}|$ distance in $\hat{\Gamma}$

[Klarreich] $\partial \widehat{\Gamma}$ = minimal foliations $\subset \mathcal{PML}$

[Kaimanovich-Masur] $w_n \rightarrow \lambda \in \mathcal{PML}$ a.s.

This gives a measure ν on \mathcal{PML} , $\nu(\overline{X}) = 0$ implies X transient

- Centralizers have measure zero
- \bullet Relative conjugacy bounds in ${\cal G}$

i.e. if a,b conjugate, then $\exists w$ such that $a = wbw^{-1}$, and

$$|\widehat{w}| \leqslant K(|\widehat{a}| + |\widehat{b}|)$$

• Periodic, reducible elements are conjugate to relatively short elements $r = wsw^{-1}$

 $\Rightarrow w s w^{-1}$ is quasi-geodesic for $|\hat{s}| < B$

Let R = reducibles \cup periodics $R_k = k$ -close elements of R (close in Γ !) $R_k = \{r \in R \mid \exists r' \in R \setminus r \text{ with } d_{\Gamma}(r, r') \leq k\}$ Claim: $\nu(\overline{R_k}) = 0$

Proof: if $r_n \in R_k$ and $r_n \to \lambda \in \mathcal{PML}$, then there is $r'_n \in R_k \setminus r_n$, with $d_{\Gamma}(r_n, r'_n) \leq k$ and $r'_n \to \lambda$

 $B_k \subset \Gamma$ finite, pass to subsequence with $r_n^{-1}r'_n$ constant, i.e. consider $R^g = \{r \in R \mid rg \in R\}$

quasi-geodesic paths fellow travel, so w = xy, w' = xy' for $|\hat{y}|, |\hat{y'}|$ short $\Rightarrow |\widehat{x^{-1}gx}|$ short

Conjugacy bounds $\Rightarrow x^{-1}gx = zgz^{-1}, |\hat{z}|$ short $\Rightarrow g(xz) = (xz)g$, so $w \in N_K(C(g))$ $\Rightarrow \overline{R^g} \subset \overline{C(g)}$

 $\mathbb{P}(w_n \in R_k)
ightarrow \mathsf{0} \text{ as } n
ightarrow \infty$

 $\mathbb{P}(w_n \in R \setminus R_k) \leqslant 1/k$

Random 3-manifolds: use w_n as the gluing map for a Heegaard splitting

Thm: $\mathbb{P}(M(w_n) \text{ is hyperbolic}) \to 1 \text{ as } n \to \infty$

Previous argument shows translation distance of $w_n \to \infty$

Claim: splitting distance $\rightarrow \infty$

[Kerckhoff] Disc set has measure zero

[Masur-Minsky] Disc set is quasiconvex

[Hempel, Kobayashi] Distance $> 2 \Rightarrow$ hyperbolic, assuming geometrization