Random walks on the mapping class group

arXiv:math.GT/0604433

Joseph Maher, UQAM

Σ closed orientable surface

Def: $G=\operatorname{MCG}(\Sigma)$
$=\operatorname{Diff}^{+}(\Sigma) / \operatorname{Diff}_{0}(\Sigma)$

Let 「 be a Cayley graph for G, consider nearest neighbour random
 walk on 「
[Thurston] Classification of elements of G :

- Periodic
- Reducible
- Pseudo-Anosov

Thm: Let w_{n} be a random walk of length n, then $\mathbb{P}\left(w_{n}\right.$ is pseudo-Anosov $) \rightarrow 1$ as $n \rightarrow \infty$
cf [Rivin, math.NT/0604489, Rivin-I. Kapovich]

More generally, pick probability distibution μ on G, Markov chain with $p(x, y)=\mu\left(x^{-1} y\right)$

Require:

- μ symmetric, i.e. $\mu(x)=\mu\left(x^{-1}\right)$
- $\operatorname{supp}(\mu)$ non-elementary
- $\operatorname{supp}(\mu)$ not contained in a centralizer

Example: $\operatorname{supp}(\mu)=$ Torelli group
[Masur-Minsky] G is weakly relatively hyperbolic
i.e. cone off cosets of subgroups H_{i} to produce relative space $\hat{\Gamma}$

$\hat{\Gamma}$ quasi-isometric to complex of curves, δ-hyperbolic

$$
\begin{aligned}
& |x| \text { distance in Г } \\
& |\widehat{x}| \text { distance in } \hat{\Gamma}
\end{aligned}
$$

[Klarreich] $\partial \hat{\Gamma}=$ minimal foliations $\subset \mathcal{P} \mathcal{M L}$
[Kaimanovich-Masur] $w_{n} \rightarrow \lambda \in \mathcal{P} \mathcal{M L}$ a.s.

This gives a measure ν on $\mathcal{P M} \mathcal{L}$, $\nu(\bar{X})=0$ implies X transient

- Centralizers have measure zero
- Relative conjugacy bounds in G
i.e. if a, b conjugate, then $\exists w$ such that $a=$ $w b w^{-1}$, and

$$
|\widehat{w}| \leqslant K(|\widehat{a}|+|\widehat{b}|)
$$

- Periodic, reducible elements are conjugate to relatively short elements $r=w s w^{-1}$
$\Rightarrow w s w^{-1}$ is quasi-geodesic for $|\widehat{s}|<B$

Let $R=$ reducibles \cup periodics
$R_{k}=k$-close elements of R (close in $\Gamma!$)
$R_{k}=\left\{r \in R \mid \exists r^{\prime} \in R \backslash r\right.$ with $\left.d_{\Gamma}\left(r, r^{\prime}\right) \leqslant k\right\}$
Claim: $\nu\left(\overline{R_{k}}\right)=0$

Proof: if $r_{n} \in R_{k}$ and $r_{n} \rightarrow \lambda \in \mathcal{P M} \mathcal{L}$, then there is $r_{n}^{\prime} \in R_{k} \backslash r_{n}$, with $d_{\Gamma}\left(r_{n}, r_{n}^{\prime}\right) \leqslant k$ and $r_{n}^{\prime} \rightarrow \lambda$
$B_{k} \subset \Gamma$ finite, pass to subsequence with $r_{n}^{-1} r_{n}^{\prime}$ constant, i.e. consider $R^{g}=\{r \in R \mid r g \in R\}$

quasi-geodesic paths fellow travel,
so $w=x y, w^{\prime}=x y^{\prime}$ for $|\widehat{y}|,\left|\widehat{y^{\prime}}\right|$ short
$\Rightarrow\left|x^{-1} g x\right|$ short
Conjugacy bounds $\Rightarrow x^{-1} g x=z g z^{-1},|\hat{z}|$ short
$\Rightarrow g(x z)=(x z) g$, so $w \in N_{K}(C(g))$
$\Rightarrow \overline{R^{g}} \subset \overline{C(g)}$

$\mathbb{P}\left(w_{n} \in R_{k}\right) \rightarrow 0$ as $n \rightarrow \infty$
$\mathbb{P}\left(w_{n} \in R \backslash R_{k}\right) \leqslant 1 / k$

Random 3-manifolds: use w_{n} as the gluing map for a Heegaard splitting

Thm: $\mathbb{P}\left(M\left(w_{n}\right)\right.$ is hyperbolic $) \rightarrow 1$ as $n \rightarrow \infty$

Previous argument shows translation distance of $w_{n} \rightarrow \infty$

Claim: splitting distance $\rightarrow \infty$
[Kerckhoff] Disc set has measure zero
[Masur-Minsky] Disc set is quasiconvex
[Hempel, Kobayashi] Distance $>2 \Rightarrow$ hyperbolic, assuming geometrization

