Linear progress in the complex of curves

Joseph Maher, Oklahoma State

Σ closed orientable surface

Def: $G=\operatorname{MCG}(\Sigma)$
$=\operatorname{Diff}^{+}(\Sigma) / \operatorname{Diff}_{0}(\Sigma)$

Finitely generated

Let 「 be a Cayley graph for G,
 consider nearest neighbour random walk on 「
[Kesten et al.] $\left|w_{n}\right|_{\Gamma}$ grows linearly.
i.e. $\mathbb{P}\left(\frac{n}{E} \leqslant\left|w_{n}\right| \Gamma \leqslant n E\right) \rightarrow 1$, as $n \rightarrow \infty$.
[Masur-Minsky] G is weakly relatively hyperbolic.

Given $H<G$, the relative space $\hat{\Gamma}$ is Γ, with each coset $g H$ coned off to a vertex $v_{g H}$.

If $\hat{\Gamma}$ is δ-hyperbolic then we say G is weakly relatively hyperbolic
[Masur-Minsky] $\hat{\Gamma} \sim_{Q I} \mathcal{C}(\Sigma)$ complex of curves.
[M] $\left|w_{n}\right|_{\hat{\Gamma}}$ grows linearly
[Klarreich] $\partial \hat{\Gamma}=$ minimal foliations $\subset \mathcal{P M} \mathcal{L}$
[Kaimanovich-Masur] $w_{n} \rightarrow \lambda \in \mathcal{P M} \mathcal{L}$ a.s.

This gives a measure ν on $\mathcal{P M} \mathcal{L}$, $\nu(X)=$ probability w_{n} converges to $\lambda \in X$

Half space $H(1, x)=\{y \in \hat{\Gamma} \mid \widehat{d}(x, y) \leqslant \widehat{d}(y, 1)\}$

Lemma: $\nu(H(1, x)) \leqslant L^{|x|} \hat{r}$, for some constant $L<1$ independent of x

Proof: $\nu(H(1, x)) \leqslant 1-\epsilon$ for all $|x|_{\hat{\Gamma}} \geqslant K$, for constants $\epsilon>0$ and K

Nested half spaces, conditional probability.

Linear progress:

For large enough $m,-m L^{m}+(1-L) \geqslant \epsilon>0$

So $\mathbb{E}\left(w_{n+m}\right) \geqslant \mathbb{E}\left(w_{n}\right)+\epsilon$
use: Kingman's subadditive ergodic theorem

