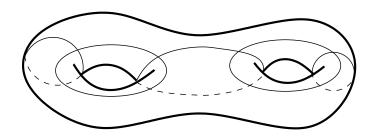
Linear progress in the complex of curves

Joseph Maher, Oklahoma State

$\boldsymbol{\Sigma}$ closed orientable surface



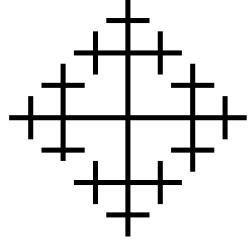
Def: $G = MCG(\Sigma)$ = Diff⁺(Σ)/Diff₀(Σ)

Finitely generated

Let Γ be a Cayley graph for G, consider nearest neighbour random walk on Γ

[Kesten et al.] $|w_n|_{\Gamma}$ grows linearly.

i.e. $\mathbb{P}(\frac{n}{E} \leq |w_n|_{\Gamma} \leq nE) \rightarrow 1$, as $n \rightarrow \infty$.



[Masur-Minsky] G is weakly relatively hyperbolic.

Given H < G, the relative space $\widehat{\Gamma}$ is Γ , with each coset gH coned off to a vertex v_{gH} .

$$G = F_2 = \langle a, b \mid \rangle$$

$$H = \langle a \rangle$$

If $\widehat{\Gamma}$ is δ -hyperbolic then we say G is weakly relatively hyperbolic

[Masur-Minsky] $\widehat{\Gamma} \sim_{QI} \mathcal{C}(\Sigma)$ complex of curves.

[M] $|w_n|_{\widehat{\Gamma}}$ grows linearly

[Klarreich] $\partial \widehat{\Gamma}$ = minimal foliations $\subset \mathcal{PML}$

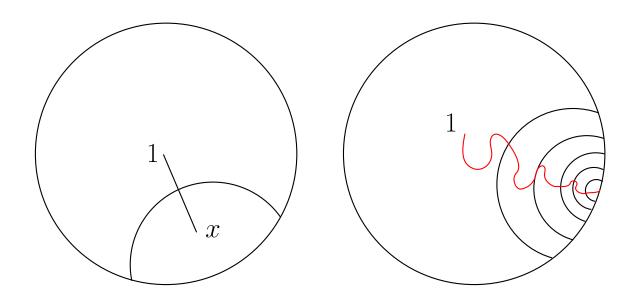
[Kaimanovich-Masur] $w_n \rightarrow \lambda \in \mathcal{PML}$ a.s.

This gives a measure ν on \mathcal{PML} , $\nu(X) = \text{probability } w_n \text{ converges to } \lambda \in X$

Half space $H(1,x) = \{y \in \widehat{\Gamma} \mid \widehat{d}(x,y) \leq \widehat{d}(y,1)\}$

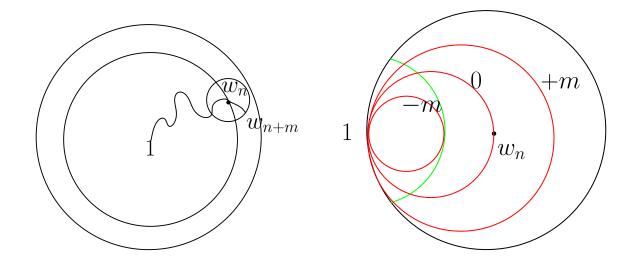
Lemma: $\nu(H(1,x)) \leq L^{|x|} \hat{\Gamma}$, for some constant L < 1 independent of x

Proof: $\nu(H(1,x)) \leq 1 - \epsilon$ for all $|x|_{\widehat{\Gamma}} \geq K$, for constants $\epsilon > 0$ and K



Nested half spaces, conditional probability.

Linear progress:



For large enough m, $-mL^m + (1 - L) \ge \epsilon > 0$

So $\mathbb{E}(w_{n+m}) \ge \mathbb{E}(w_n) + \epsilon$

use: Kingman's subadditive ergodic theorem