Random Heegaard splittings

Joseph Maher, Oklahoma State

Every 3-manifold has a Heegaard splitting

The gluing map is an element of the mapping class group $G = MCG(\Sigma) = Diff^+(\Sigma)/Diff_0(\Sigma)$

G is finitely generated, let Γ be a Cayley graph for G, consider the nearest neighbour random walk on Γ .

More generally: pick a probability distribution μ on G, and define a Markov chain with transition probabilities $p(x, y) = \mu(x^{-1}y)$.

Path space: (Ω, \mathbb{P}) , where $\Omega = G^{\mathbb{N}}$, \mathbb{P} depends on μ

Require:

- subgroup generated by supp(μ) non-elementary
- μ has finite first moment

Conjecture [Dunfield-W. Thurston]: Let w_n be a random walk of length n on the mapping class group. Then

- $\mathbb{P}(M(w_n) \text{ is hyperbolic}) \to 1 \text{ as } n \to \infty$
- $Vol(M(w_n))$ grows linearly in n

[Kesten, Day et al.] A random walk on a nonamenable group has a linear rate of escape

The mapping class group is non-amenable, so $|w_n|_{\Gamma}$ grows linearly, i.e. $\mathbb{P}(n/E \leq |w_n|_{\Gamma} \leq nE) \rightarrow 1$, as $n \rightarrow \infty$.

Complex of curves $C(\Sigma)$:

• vertices: isotopy classes of simple closed curves

• simplices: spanned by disjoint collections of simple closed curves

Thm [M]: A random walk on the mapping class group makes linear progress in the complex of curves, i.e.

 $\mathbb{P}(n/L \leq d_{\mathcal{C}}(x_0, w_n x_0) \leq Ln) \to 1 \text{ as } n \to \infty$

[Brock-Souto] Hyperbolic volume coarsely equivalent to distance between disc sets in a (modified) pants complex

[Masur-Minsky] $\mathcal{C}(\Sigma)$ is δ -hyperbolic.

[Klarreich] $\partial C(\Sigma) = minimal \text{ foliations} \subset \mathcal{PMF}$

[Kaimanovich-Masur] $w_n x_0 \to F \in \mathcal{PMF}$ a.s.

This gives a measure ν on \mathcal{PMF} , $\nu(X) = \text{probability } w_n \text{ converges to } F \in X$

Half space $H(x_0, y) = \{z \in \mathcal{C}(\Sigma) \mid d_{\mathcal{C}}(z, y) \leq d_{\mathcal{C}}(z, x_0)\}$

Lemma: $\nu(H(x_0, y)) \leq L^{|y|}$, for some constant L < 1 independent of y

Proof: $\nu(H(x_0, y)) \leq 1 - \epsilon$ for all $|y| \geq K$, for constants $\epsilon > 0$ and K

Nested half spaces, conditional probability.

Linear progress:

For large enough m, $-mL^m + (1 - L) \ge a > 0$

So $\mathbb{E}(w_{n+m}) \ge \mathbb{E}(w_n) + a$

use: Kingman's subadditive ergodic theorem