Random Heegaard splittings

 Joseph Maher, Oklahoma StateEvery 3-manifold has a Heegaard splitting

The gluing map is an element of the mapping class group $G=\operatorname{MCG}(\Sigma)=\operatorname{Diff}^{+}(\Sigma) / \operatorname{Diff}_{0}(\Sigma)$
G is finitely generated, let Γ be a Cayley graph for G, consider the nearest neighbour random walk on Γ.

More generally: pick a probability distribution μ on G, and define a Markov chain with transition probabilities $p(x, y)=\mu\left(x^{-1} y\right)$.

Path space: (Ω, \mathbb{P}), where $\Omega=G^{\mathbb{N}}, \mathbb{P}$ depends on μ

Require:

- subgroup generated by supp (μ) non-elementary
- μ has finite first moment

Conjecture [Dunfield-W. Thurston]: Let w_{n} be a random walk of length n on the mapping class group. Then

- $\mathbb{P}\left(M\left(w_{n}\right)\right.$ is hyperbolic) $\rightarrow 1$ as $n \rightarrow \infty$
- $\operatorname{Vol}\left(M\left(w_{n}\right)\right)$ grows linearly in n
[Kesten, Day et al.] A random walk on a nonamenable group has a linear rate of escape

The mapping class group is non-amenable, so $\left|w_{n}\right|\ulcorner$ grows linearly,
i.e. $\mathbb{P}\left(n / E \leqslant\left|w_{n}\right|_{\Gamma} \leqslant n E\right) \rightarrow 1$, as $n \rightarrow \infty$.

Complex of curves $\mathcal{C}(\Sigma)$:

- vertices: isotopy classes of simple closed curves
- simplices: spanned by disjoint collections of simple closed curves

Thm [M]: A random walk on the mapping class group makes linear progress in the complex of curves, i.e.
$\mathbb{P}\left(n / L \leqslant d_{\mathcal{C}}\left(x_{0}, w_{n} x_{0}\right) \leqslant L n\right) \rightarrow 1$ as $n \rightarrow \infty$
[Brock-Souto] Hyperbolic volume coarsely equivalent to distance between disc sets in a (modified) pants complex
[Masur-Minsky] $\mathcal{C}(\Sigma)$ is δ-hyperbolic.
[Klarreich] $\partial \mathcal{C}(\Sigma)=$ minimal foliations $\subset \mathcal{P M \mathcal { F }}$
[Kaimanovich-Masur] $w_{n} x_{0} \rightarrow F \in \mathcal{P} \mathcal{M F}$ a.s.
This gives a measure ν on $\mathcal{P M F}$, $\nu(X)=$ probability w_{n} converges to $F \in X$

Half space $H\left(x_{0}, y\right)=\left\{z \in \mathcal{C}(\Sigma) \mid d_{\mathcal{C}}(z, y) \leqslant\right.$ $\left.d_{\mathcal{C}}\left(z, x_{0}\right)\right\}$

Lemma: $\nu\left(H\left(x_{0}, y\right)\right) \leqslant L^{|y|}$, for some constant $L<1$ independent of y

Proof: $\nu\left(H\left(x_{0}, y\right)\right) \leqslant 1-\epsilon$ for all $|y| \geqslant K$, for constants $\epsilon>0$ and K

Nested half spaces, conditional probability.

Linear progress:

For large enough $m,-m L^{m}+(1-L) \geqslant a>0$

So $\mathbb{E}\left(w_{n+m}\right) \geqslant \mathbb{E}\left(w_{n}\right)+a$
use: Kingman's subadditive ergodic theorem

