I would like to thank Anna Lenzhen for pointing out an error in the proof of Lemma 2.11, and Matthieu Dussaule for pointing out an error in Proposition 3.3.

Here are the corrected versions.
Lemma 2.11. Let μ be a probability distribution of finite support of diameter D. Let $X_{0} \supset X_{1} \supset$ $X_{2} \supset \cdots$ be a sequence of nested closed subsets of \bar{G} with the following properties:

$$
\begin{align*}
& 1 \notin X_{0} \tag{1}\\
& X \backslash X_{i} \cap X_{i+1}=\varnothing \tag{2}\\
& d\left(X \backslash X_{i}, X_{i+1}\right) \geqslant D \tag{3}
\end{align*}
$$

Furthermore, suppose there is a constant $0<\epsilon<\frac{1}{2}$ such that for any $x \in X_{i} \backslash X_{i+1}$,

$$
\begin{align*}
& \nu_{x}\left(X_{i+2}\right) \leqslant \epsilon \tag{4}\\
& \nu_{x}\left(X \backslash X_{i-1}\right) \leqslant \epsilon \tag{5}
\end{align*}
$$

then there are constants $c<1$ and K, which only depend on ϵ, such that $\nu\left(X_{i}\right) \leqslant c^{i}$ and $\mu_{n}\left(X_{i}\right) \leqslant$ $K c^{i}$.
Proof. By properties (1), (2) and Proposition 2.4, any sequence of points which converges into the limit set of X_{i+2} must contain points in X_{i+1}. As the diameter of the support of μ is D, property (3) implies that any sample path which converges into X_{i+2} must contain at least one point in $X_{i} \backslash X_{i+1}$. Therefore, in order to find an upper bound for the probability a sample converges into X_{i+2}, we can condition on the location at which the sample path first hits $X_{i} \backslash X_{i+1}$. Let F be the (improper) distribution of first hitting times in X_{i}, i.e. $F(x)$ is equal to the probability that a sample path first hits $x \in X_{i}$. This is an improper distribution in general as $F\left(X_{i}\right)=\sum_{x \in X_{i}} F(x)$ may be strictly less than one, as there may be sample paths which never hit X_{i}. As F is supported on $X_{i} \backslash X_{i+1}$,

$$
\nu\left(X_{i+2}\right)=\sum_{x \in X_{i} \backslash X_{i+1}} F(x) \nu_{x}\left(X_{i+2}\right)
$$

For all $x \in X_{i} \backslash X_{i+1}$, there is an upper bound $\nu_{x}\left(X_{i+2}\right) \leqslant \epsilon$, by property (4), so

$$
\begin{equation*}
\nu\left(X_{i}\right) \leqslant \epsilon F\left(X_{i}\right) \tag{6}
\end{equation*}
$$

Not all sample paths which converge to X_{i-1} need to hit X_{i}, but those that hit X_{i} and then converge to X_{i-1}, give a lower bound on $\nu\left(X_{i-1}\right)$, i.e.

$$
\nu\left(X_{i-1}\right) \geqslant \sum_{x \in X_{i} \backslash X_{i+1}} F(x) \nu_{x}\left(X_{i-1}\right)
$$

By property (5), $\nu_{x}\left(X_{i-1}\right) \geqslant 1-\epsilon$, so

$$
\begin{equation*}
\nu\left(X_{i-1}\right) \geqslant(1-\epsilon) F\left(X_{i}\right) \tag{7}
\end{equation*}
$$

Therefore, combining (6) and (7), gives

$$
\frac{\nu\left(X_{i+2}\right)}{\nu\left(X_{i-1}\right)} \leqslant \frac{\epsilon}{1-\epsilon}<1
$$

as $\epsilon<\frac{1}{2}$. Therefore $\nu\left(X_{i}\right) \leqslant c^{i}$, where we may choose $c=\sqrt[3]{\epsilon /(1-\epsilon)}$.
The remaining part of the argument giving the estimate for $\mu_{n}\left(X_{i}\right)$ goes through as before.

Lemma 3.3. Let w_{n}^{k} be the k-iterated random walk of length n, generated by a finitely supported probability distribution μ, whose support generates a non-elementary subgroup of the mapping class group, and let $Z_{i}^{k}=2\left(1 \cdot w_{i}^{k}\right)_{w_{i-1}^{k}}$. Then there are constants L, K and $c<1$, which depend on μ but are independent of k, such that

$$
\mathbb{P}\left(Z_{1}^{k}+\cdots+Z_{n}^{k} \geqslant L n\right) \leqslant K c^{n}
$$

for all n.
Proof. We have shown that the probability that $Z_{i}^{k} \geqslant r$ decays exponentially in r, with exponential decay constants which do not depend on either k or i, or the values of any other Z_{j}^{k} for $j<i$. The Z_{i}^{k} are not independent, but Proposition 3.2 shows that

$$
\mathbb{P}\left(Z_{i}^{k} \geqslant r \mid w_{1}^{k}, \ldots, w_{i-1}^{k}\right) \leqslant K c^{r}
$$

As the Z_{j}^{k} for $j<i$ only depend on $w_{1}^{k}, \ldots w_{i-1}^{k}$, this implies that

$$
\mathbb{P}\left(Z_{i}^{k} \geqslant r \mid Z_{1}^{k}, \ldots, Z_{i-1}^{k}\right) \leqslant K c^{r}
$$

Therefore, the probability distribution of the sum $Z_{1}^{k}+\cdots+Z_{n}^{k}$ will be bounded above by a multiple K^{n} of the n-fold convolution of the exponential distribution function with itself. The rest of the proof proceeds as before.

We remark that this is actually a standard result in the theory of stochastic dominance: if X and Y are real valued random variables, then we say that $X \lesssim Y$ if $\mathbb{P}(X \geqslant r) \leqslant \mathbb{P}(Y \geqslant r)$. If X_{i} and Y_{i} are sequences of real valued random variables with $X_{i} \lesssim Y_{i}$ for all i, and they are all independent, then it easy to show that $X_{1}+\cdots+X_{n} \lesssim Y_{1}+\cdots+Y_{n}$. This is not true in general if the X_{i} are dependent, however, if for all i, we have

$$
X_{i} \mid X_{1}, \ldots, X_{i-1} \lesssim Y_{i}
$$

then this suffices to show that $X_{1}+\cdots+X_{n} \lesssim Y_{1}+\cdots+Y_{n}$.

