Statistics for Teichmüller geodesics

Joseph Maher, with Vaibhav Gadre and Giulio Tiozzo
joseph.maher@csi.cuny.edu
College of Staten Island, CUNY

Mar 2013

Q: What does a "typical" geodesic look like?

- visual measure/Lebesgue measure (Leb)
- random walks, hitting measure/harmonic measure ν

Often these are mutually singular, i.e. there are sets U_{1}, U_{2} such that

$$
\begin{array}{ll}
\operatorname{Leb}\left(U_{1}\right)=1 & \nu\left(U_{1}\right)=0 \\
\operatorname{Leb}\left(U_{2}\right)=0 & \nu\left(U_{2}\right)=1
\end{array}
$$

$\operatorname{PSL}(2, \mathbb{Z}) \curvearrowright \mathbb{H}^{2}$

Leb: standard Lebesgue measure on S^{1}
ν : hitting measure from nearest neighbour random walk on dual tree

$x \in S^{1} \leftrightarrow$ geodesic γ in $\mathbb{H}^{2} \leftrightarrow L R$-sequence \leftrightarrow continued fraction

$$
\overbrace{R R \ldots R L \ldots L R \ldots R \ldots \leftrightarrow}^{a_{1} \ldots} \frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}
$$

[Gauss] Leb: $\mathbb{P}\left(a_{i}=n\right) \sim \frac{1}{n^{2}}, \quad\left[\right.$ Minkowski] $\nu: \mathbb{P}\left(a_{i}=n\right) \sim \frac{1}{2^{n}}$

$a_{i} \leftrightarrow$ length of cusp excursions in $\operatorname{SL}(2, \mathbb{R}) \leftrightarrow$ word length increase word length d_{G} grows as $\sum_{i=1}^{n} a_{i}$, relative length $d_{\text {rel }}$ grows as n

$$
\text { ratio } \rho=\lim _{t \rightarrow \infty} \frac{d_{G}\left(1, g_{t}\right)}{d_{r e l}\left(1, g_{t}\right)}=\frac{1}{n} \sum_{i=1}^{n} a_{i}= \begin{cases}\infty & \text { Leb } \\ c & \nu\end{cases}
$$

Fuchsian groups, \mathbb{H}^{2} / Γ finite volume, non-compact

$$
\text { [Gadre-M-Tiozzo] } \rho=\lim _{t \rightarrow \infty} \frac{d_{G}\left(1, g_{t}\right)}{d_{r e l}\left(1, g_{t}\right)}= \begin{cases}\infty & \text { Leb } \\ c & \nu\end{cases}
$$

([Guivarc'h-Le Jan] singularity)
Mapping class groups, $\mathcal{T}(S) / G$

$$
\text { [Gadre-M-Tiozzo] } \rho=\lim _{t \notin \mathcal{T}_{\epsilon} \rightarrow \infty} \frac{d_{G}\left(1, g_{t}\right)}{d_{r e l}\left(1, g_{t}\right)}= \begin{cases}\infty & \text { Leb } \\ c & \nu\end{cases}
$$

([Gadre] sinuglarity)
$\mathcal{T}(S)$ unit (co)-tangent space $\mathcal{Q}(S)$ is unit area quadratic differentials

Leb: Masur-Veech holonomy measure invariant under geodesic flow/SL(2, $\mathbb{R})$
$q \in \mathcal{Q}(S) \leftrightarrow$ flat surface, Teichmüller disc $D_{q}=S L(2, \mathbb{R}) \cdot q \sim \mathbb{H}^{2}$
q with metric cylinders of areas bounded below \leftrightarrow horoball in D_{q}
[Masur] number of such flat cylinders of length $\leq T \sim c T^{2}$
[Rafi] excursion \sim distance along horoball \sim twist parameter \sim subsurface projection distance
[Masur-Minsky] word length $d_{G}\left(1, g_{t}\right) \sim \sum_{Y \subseteq S}\left\lfloor d_{Y}\left(1, g_{t}\right)\right\rfloor_{A}$
$\nu:[$ Kesten $][$ Day $] d_{G}\left(1, w_{n}\right) \sim n, \quad[\mathrm{M}] d_{\text {rel }}\left(1, w_{n}\right) \sim n$
random walk with finite support tracks a geodesic sublinearly, $\frac{1}{n} d\left(1, g_{t}\right) \rightarrow 0$ as $t \rightarrow \infty$
[Tiozzo] d_{n} sequence of numbers with $\left|d_{n}-d_{n+1}\right| \leq D, d_{n}$ have asymptotic distribution, then $\frac{1}{n} d_{n} \rightarrow 0$

Examples: $d_{n}=d_{G}\left(1, g_{t}\right), \quad d_{n}=d_{\mathcal{T}}\left(x_{0}, g_{t} x_{0}\right)$
Proof: for any $\epsilon \in(0,1)$ there is M such that $\frac{\left|d_{n} \geq M\right|}{n} \rightarrow \epsilon$ as $n \rightarrow \infty$

