Statistics for Teichmüller geodesics

Joseph Maher, with Vaibhav Gadre and Giulio Tiozzo joseph.maher@csi.cuny.edu

College of Staten Island, CUNY

Mar 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Q: What does a "typical" geodesic look like?

- visual measure/Lebesgue measure (Leb)
- random walks, hitting measure/harmonic measure u

Often these are *mutually singular*, i.e. there are sets U_1, U_2 such that

Leb
$$(U_1) = 1$$
 $\nu(U_1) = 0$
Leb $(U_2) = 0$ $\nu(U_2) = 1$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\textit{PSL}(2,\mathbb{Z}) \curvearrowright \mathbb{H}^2$

Leb: standard Lebesgue measure on S^1 ν : hitting measure from nearest neighbour random walk on dual tree

 $x \in S^1 \leftrightarrow$ geodesic γ in $\mathbb{H}^2 \leftrightarrow LR$ -sequence \leftrightarrow continued fraction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $a_i \leftrightarrow$ length of cusp excursions in SL(2, \mathbb{R}) \leftrightarrow word length increase word length d_G grows as $\sum_{i=1}^{n} a_i$, relative length d_{rel} grows as n

ratio
$$\rho = \lim_{t \to \infty} \frac{d_G(1, g_t)}{d_{rel}(1, g_t)} = \frac{1}{n} \sum_{i=1}^n a_i = \begin{cases} \infty & \text{Leb} \\ c & \nu \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fuchsian groups, \mathbb{H}^2/Γ finite volume, non-compact

$$[\mathsf{Gadre-M-Tiozzo}] \ \rho = \lim_{t \to \infty} \frac{d_G(1, g_t)}{d_{rel}(1, g_t)} = \begin{cases} \infty & \mathsf{Leb} \\ c & \nu \end{cases}$$

([Guivarc'h-Le Jan] singularity)

Mapping class groups, $\mathcal{T}(S)/G$

$$[\mathsf{Gadre-M-Tiozzo}] \ \rho = \lim_{t \not\in \mathcal{T}_{\epsilon} \to \infty} \frac{d_G(1, g_t)}{d_{rel}(1, g_t)} = \left\{ \begin{array}{cc} \infty & \mathsf{Leb} \\ c & \nu \end{array} \right.$$

([Gadre] sinuglarity)

 $\mathcal{T}(S)$ unit (co)-tangent space $\mathcal{Q}(S)$ is unit area quadratic differentials

Leb: Masur-Veech holonomy measure invariant under geodesic flow/ $SL(2,\mathbb{R})$

 $q \in \mathcal{Q}(S) \leftrightarrow$ flat surface, Teichmüller disc $D_q = SL(2,\mathbb{R}) \cdot q \sim \mathbb{H}^2$

q with metric cylinders of areas bounded below \leftrightarrow horoball in D_q

[Masur] number of such flat cylinders of length $\leq T \sim cT^2$

[Rafi] excursion \sim distance along horoball \sim twist parameter \sim subsurface projection distance

$$[\mathsf{Masur-Minsky}] \text{ word length } d_G(1,g_t) \sim \sum_{Y \subseteq S} \lfloor d_Y(1,g_t) \rfloor_{\mathcal{A}}$$

u: [Kesten][Day] $d_G(1, w_n) \sim n$, [M] $d_{rel}(1, w_n) \sim n$

random walk with finite support tracks a geodesic sublinearly, $rac{1}{n}d(1,g_t) o 0$ as $t o\infty$

[Tiozzo] d_n sequence of numbers with $|d_n - d_{n+1}| \le D$, d_n have asymptotic distribution, then $\frac{1}{n}d_n \to 0$

Examples: $d_n = d_G(1, g_t)$, $d_n = d_T(x_0, g_t x_0)$

Proof: for any $\epsilon \in (0,1)$ there is M such that $\frac{|d_n \ge M|}{n} \to \epsilon$ as $n \to \infty$

