Exponential decay in the mapping class group

Joseph Maher
joseph.maher@csi.cuny.edu
College of Staten Island, CUNY

January 2012
S closed orientable surface genus $\geqslant 2$
Mapping class group $\operatorname{MCG}(S)=G=\operatorname{Homeo}^{+}(S) /$ isotopy
Thm: (Nielsen-Thurston Classification) Elements of G are:

- periodic, $g^{n}=1$
- reducible: g fixes a disjoint collection of simple closed curves
- pseudo-Anosov (pA): everything else

Random walks on G :
Let μ probability distribution on G with finite support, then a random walk of length n is

$$
w_{n}=s_{1} s_{2} \ldots s_{n}
$$

where the s_{i} are independent identically μ-distributed random variables

Thm [Rivin][Kowalski]:

$$
\mathbb{P}\left(w_{n} \text { is } \mathrm{pA}\right) \text { is } 1-O\left(c^{n}\right), \quad c<1
$$

Uses: action on homology $G \rightarrow \operatorname{Sp}(2 g, \mathbb{Z})$
Def: Torelli subgroup T is $\operatorname{ker}\{G \rightarrow \operatorname{Sp}(2 g, \mathbb{Z})\}$

Thm [Malestein-Souto][Lubotzky-Meiri]:
$\mathbb{P}($ random walk on T is pA$)$ is $1-O\left(c^{n}\right)$
Uses: action on homology of double covers

Thm [M]:

$$
\mathbb{P}\left(w_{n} \text { on } H<G \text { is } \mathrm{pA}\right) \text { is } 1-O\left(c^{n}\right)
$$

where $H=\langle\operatorname{supp} \mu\rangle$ is a non-elementary subgroup of G
Uses: action of G on the curve complex $\mathcal{C}(S)$

The mapping class group acts on the complex of curves $\mathcal{C}(S)$.
The complex of curves is a simplicial complex.

- vertices: isotopy classes of essential simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.
G acts by simplicial isometries on $\mathcal{C}(S)$.

The mapping class group acts on the complex of curves $\mathcal{C}(S)$.
The complex of curves is a simplicial complex.

- vertices: isotopy classes of essential simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.
G acts by simplicial isometries on $\mathcal{C}(S)$.
[Masur-Minsky] the complex of curves is δ-hyperbolic.
Recall a metric space is δ-hyperbolic if every geodesic triangle is δ-thin, i.e. any side is contained in a δ-neighbourhood of the other two.

Examples: hyperbolic space, trees, the complex of curves $\mathcal{C}(S)$.
Isometries of δ-hyperbolic spaces are

- elliptic, fix a point in the interior (periodic, reducible)
- parabolic (none of these)
- hyperbolic (pA)
[Masur-Minsky] the complex of curves is δ-hyperbolic.
Recall a metric space is δ-hyperbolic if every geodesic triangle is δ-thin, i.e. any side is contained in a δ-neighbourhood of the other two.

Examples: hyperbolic space, trees, the complex of curves $\mathcal{C}(S)$.
Isometries of δ-hyperbolic spaces are

- elliptic, fix a point in the interior (periodic, reducible)
- parabolic (none of these)
- hyperbolic (pA)

Choose basepoint in $x_{0} \in \mathcal{C}(S)$
Curve complex orbit metric (G, d) is:

$$
d(g, h)=d_{\mathcal{C}(S)}\left(g\left(x_{0}\right), h\left(x_{0}\right)\right)
$$

g is $\mathrm{pA} \Leftrightarrow g$ acts as a hyperbolic isometry on $\mathcal{C}(S)$

$$
\Leftrightarrow \tau(g)>0, \tau(g)=\lim _{n \rightarrow \infty} \frac{1}{n} d\left(1, g^{n}\right)
$$

$H<G$ non-elementary $\Leftrightarrow g, h \in H$ pA with distinct fixed points in Gromov boundary $\partial \mathcal{C}(S)$

Thm [M]:

$$
\mathbb{P}\left(\tau\left(w_{n}\right) \leqslant B\right) \text { is } O\left(c^{n}\right)
$$

for $H=\langle\operatorname{supp} \mu\rangle$ non-elementary
recall $w_{n}=s_{1} s_{2} \ldots s_{n}$, so w_{n} distributed as n-fold convolution $\mu_{n}=\mu \star \mu \star \cdots \star \mu$

Thm [Kaimanovich-Masur]: A random walk on G converges almost surely to a point in the Gromov boundary $\partial \mathcal{C}(S)$

This gives a hitting measure $\nu=\lim _{n \rightarrow \infty} \mu_{n}$

Shadow sets: $S_{1}(x, r)=\left\{y \in G \mid(x \cdot y)_{1} \geqslant r\right\}$
Gromov product: $(x \cdot y)_{1}=\frac{1}{2}(d(1, x)+d(1, y)-d(x, y))$

Estimates:

- $\nu\left(S_{1}(x, r)\right) \leqslant c^{r}$
- $\mu_{n}\left(S_{1}(x, r)\right) \leqslant K c^{r}$ K, c independent of x, r

Lemma: (Linear progress) There is $L>0, c<1$ such that

$$
\mathbb{P}\left(d\left(1, w_{n}\right) \leqslant L n\right) \text { is } O\left(c^{n}\right)
$$

$d\left(1, w_{k n}\right)=d\left(1, w_{k}\right)+d\left(w_{n}, w_{2 k}\right)+\cdots+d\left(w_{(n-1) k}, w_{n k}\right)$

$$
-B_{1}
$$

$$
-B_{n}
$$

$\mathbb{P}\left(B_{i} \geqslant r\right)=\mu_{n}\left(S_{1}\left(w_{i n}^{-1}, r\right)\right) \leqslant K c^{r}$

Concentration of measure

X_{i} independent identically distributed

$$
\mathbb{P}\left(\left|\sum X_{i}-n \mathbb{E}\left(X_{i}\right)\right|>t n\right) \text { is } O\left(c^{n}\right)
$$

[Bernstein] X_{i} finite support
[Chernoff-Hoeffding] X_{i} exponential decay
Furthermore $c \rightarrow 0$ as $t \rightarrow \infty$

Distribution of $\mathrm{pAs}\left(\tau\left(w_{n}\right) \leqslant B\right)$
Relative conjugacy bounds (cf [Masur-Minsky][Tao])
a, b conjugate, then there is w such that $a=w b w^{-1}$ with

$$
d(1, w) \leqslant K(d(1, a)+d(1, b))
$$

If g conjugate to short word s, then g close to $w s w^{-1}$, quasigeodesic, so (g, g^{-1}) close to diagonal in $G \times G$

estimate: $\mathbb{P}\left(\left(w_{n}, w_{n}^{-1}\right) \in N_{t}(\Delta)\right) \leqslant K c^{n}$

