Exponential decay in the mapping class group

Joseph Maher joseph.maher@csi.cuny.edu

College of Staten Island, CUNY

January 2012

S closed orientable surface genus ≥ 2

Mapping class group $MCG(S) = G = Homeo^+(S)/isotopy$

Thm: (Nielsen-Thurston Classification) Elements of G are:

- periodic, $g^n = 1$
- reducible: g fixes a disjoint collection of simple closed curves
- pseudo-Anosov (pA): everything else

Random walks on G:

Let μ probability distribution on G with finite support, then a random walk of length n is

$$w_n = s_1 s_2 \dots s_n$$

where the s_i are independent identically μ -distributed random variables

Thm [Rivin][Kowalski]:

$$\mathbb{P}(w_n \text{ is pA}) \text{ is } 1 - O(c^n), \quad c < 1$$

Uses: action on homology $G \to Sp(2g,\mathbb{Z})$

Def: Torelli subgroup T is ker $\{G \rightarrow Sp(2g, \mathbb{Z})\}$

Thm [Malestein-Souto][Lubotzky-Meiri]:

 $\mathbb{P}(ext{random walk on } T ext{ is pA}) ext{ is } 1 - O(c^n)$ Uses: action on homology of double covers Thm [M]: $\mathbb{P}(w_n \text{ on } H < G \text{ is pA }) \text{ is } 1 - O(c^n)$ where $H = \langle \text{supp } \mu \rangle$ is a non-elementary subgroup of GUses: action of G on the curve complex $\mathcal{C}(S)$

The mapping class group acts on the complex of curves C(S).

The complex of curves is a simplicial complex.

- vertices: isotopy classes of essential simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

G acts by simplicial isometries on C(S).

The mapping class group acts on the complex of curves C(S).

The complex of curves is a simplicial complex.

- vertices: isotopy classes of essential simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

G acts by simplicial isometries on C(S).

[Masur-Minsky] the complex of curves is δ -hyperbolic.

Recall a metric space is δ -hyperbolic if every geodesic triangle is δ -thin, i.e. any side is contained in a δ -neighbourhood of the other two.

Examples: hyperbolic space, trees, the complex of curves C(S).

Isometries of δ -hyperbolic spaces are

- elliptic, fix a point in the interior (periodic, reducible)
- parabolic (none of these)
- hyperbolic (pA)

[Masur-Minsky] the complex of curves is δ -hyperbolic.

Recall a metric space is δ -hyperbolic if every geodesic triangle is δ -thin, i.e. any side is contained in a δ -neighbourhood of the other two.

Examples: hyperbolic space, trees, the complex of curves C(S).

Isometries of δ -hyperbolic spaces are

- elliptic, fix a point in the interior (periodic, reducible)
- parabolic (none of these)
- hyperbolic (pA)

Choose basepoint in $x_0 \in \mathcal{C}(S)$

Curve complex orbit metric (G, d) is:

$$d(g,h) = d_{\mathcal{C}(S)}(g(x_0),h(x_0))$$

 $g ext{ is pA} \Leftrightarrow g ext{ acts as a hyperbolic isometry on } \mathcal{C}(S)$ $\Leftrightarrow \tau(g) > 0, \ \tau(g) = \lim_{n \to \infty} \frac{1}{n} d(1, g^n)$

H < G non-elementary $\Leftrightarrow g, h \in H$ pA with distinct fixed points in Gromov boundary $\partial C(S)$

Thm [M]:

$$\mathbb{P}(\tau(w_n) \leqslant B)$$
 is $O(c^n)$

for $H = \langle \mathsf{supp}\ \mu
angle$ non-elementary

recall $w_n = s_1 s_2 \dots s_n$, so w_n distributed as *n*-fold convolution $\mu_n = \mu \star \mu \star \dots \star \mu$

Thm [Kaimanovich-Masur]: A random walk on G converges almost surely to a point in the Gromov boundary $\partial C(S)$

This gives a hitting measure $\nu = \lim_{n \to \infty} \mu_n$

Shadow sets: $S_1(x,r) = \{y \in G \mid (x \cdot y)_1 \ge r\}$

Gromov product: $(x \cdot y)_1 = \frac{1}{2}(d(1, x) + d(1, y) - d(x, y))$

Estimates:

- $\nu(S_1(x,r)) \leq c^r$
- $\mu_n(S_1(x,r)) \leq Kc^r$

K, c independent of x, r

Lemma: (Linear progress) There is L>0, c<1 such that $\mathbb{P}(d(1,w_n)\leqslant Ln)$ is $O(c^n)$

$$d(1, w_{kn}) = d(1, w_k) + d(w_n, w_{2k}) + \dots + d(w_{(n-1)k}, w_{nk}) -B_1 - B_n$$

 $\mathbb{P}(B_i \ge r) = \mu_n(S_1(w_{in}^{-1}, r)) \le Kc^r$

Concentration of measure

 X_i independent identically distributed

$$\mathbb{P}(|\sum X_i - n\mathbb{E}(X_i)| > tn)$$
 is $O(c^n)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Bernstein] X_i finite support

[Chernoff-Hoeffding] X_i exponential decay

Furthermore c
ightarrow 0 as $t
ightarrow \infty$

Distribution of pAs $(\tau(w_n) \leq B)$

Relative conjugacy bounds (cf [Masur-Minsky][Tao])

a, b conjugate, then there is w such that $a = wbw^{-1}$ with

$$d(1,w) \leqslant K(d(1,a) + d(1,b))$$

If g conjugate to short word s, then g close to wsw^{-1} , quasigeodesic, so (g, g^{-1}) close to diagonal in $G \times G$

estimate: $\mathbb{P}((w_n, w_n^{-1}) \in N_t(\Delta)) \leqslant Kc^n$