Growth rates for stable commutator length

Joseph Maher
joseph.maher@csi.cuny.edu
College of Staten Island, CUNY

April 2011

Joint work with Danny Calegari, arXiv:math/1008.4952.
G group
commutator $[g, h]=g h g^{-1} h^{-1}$
commutator subgroup $G^{\prime}=[G, G]$
Def: commutator length:

$$
\mathrm{cl}(g)=\min \{n \mid g \text { is a product of } n \text { commutators }\}
$$

- cl word metric on G^{\prime} wrt to generating set of all commutators

Def: stable commutator length:

$$
\operatorname{scl}(g)=\lim _{n \rightarrow \infty} \frac{1}{n} c l\left(g^{n}\right)
$$

- scl is translation length of g on G^{\prime}
- monotonic: $\phi: G \rightarrow H$ homomorphism, $s c l(\phi(g)) \leqslant s c l(g)$

Example: $F_{2}=\langle a, b \mid\rangle$

$g=[a, b]=a b a^{-1} b^{-1}$
$c l(g)=1, \quad c l\left(g^{2}\right)=2, \quad c l\left(g^{3}\right)=2:$
$[a, b]^{3}=\left[a b a^{-1}, b^{-1} a b a^{-2}\right]\left[b^{-1} a b, b^{2}\right]$
so $\operatorname{scl}([a, b]) \leqslant 2 / 3$

Topological version:

- Group $\mathrm{G} \leftrightarrow$ space $X, \pi_{1} X=G$
- $g \in G \leftrightarrow$ homotopy class of loop γ in X
- conjugacy class of $g \leftrightarrow$ free homotopy class of γ
- $g \in G^{\prime} \leftrightarrow[\gamma]=0 \in H_{1}(X) \leftrightarrow \gamma$ bounds a surface S
- $\mathrm{cl}(g) \leftrightarrow \inf \{\operatorname{genus}(S) \mid \partial S \rightarrow \gamma$ degree 1$\}$
- $\operatorname{scl}(g) \leftrightarrow \inf \left\{\left.\frac{1}{n} \operatorname{genus}(S) \right\rvert\, \partial S \rightarrow \gamma\right.$ degree $\left.n\right\}$

$$
[a, b]^{3}=\left[a b a^{-1}, b^{-1} a b a^{-2}\right]\left[b^{-1} a b, b^{2}\right]
$$

genus not multiplicative under covers, use Euler characteristic:
Def: $\operatorname{scl}(g)=\inf \left\{\left.\frac{-1}{2 n} \chi(S) \right\rvert\, \partial S \rightarrow \gamma\right.$ degree $\left.n\right\}$
An extremal surface realizes scl, in fact $\operatorname{scl}([a, b])=\frac{1}{2}$

Generic elements in G :

- random word of length n
S_{n} all elements of length n, uniform measure
B_{n} all elements of length $\leqslant n$, uniform measure
- random walk of length n
uniform measure on symmetric generating set A $w_{n}=s_{1} s_{2} \ldots s_{n}, s_{i}$ chosen from A independently

Thm[Calegari-M]: G Gromov hyperbolic, there are constants c_{1}, c_{2} such that

$$
\mathbb{P}\left(c_{1} n / \log n \leqslant \operatorname{scl}\left(g_{n}\right) \leqslant c_{2} n / \log n\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

[Calegari-Walker] $F_{k}, c=\log (2 k-1) / 6$

Generic elements in G :

- random word of length n
S_{n} all elements of length n, uniform measure
B_{n} all elements of length $\leqslant n$, uniform measure
- random walk of length n
uniform measure on symmetric generating set A $w_{n}=s_{1} s_{2} \ldots s_{n}, s_{i}$ chosen from A independently

Thm[Calegari-M]: G Gromov hyperbolic, there are constants c_{1}, c_{2} such that

$$
\mathbb{P}\left(c_{1} n / \log n \leqslant \operatorname{scl}\left(w_{n}\right) \leqslant c_{2} n / \log n\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

$\phi: G \rightarrow H$ homorphism, then $\phi\left(w_{n}\right)$ random walk on H, so $\operatorname{scl}\left(w_{n}\right) \leqslant c_{2} n / \log n$ for any group.
F_{2} word length version

- estimates: $\mathbb{P}\left(g_{n} \in F_{2}^{\prime}\right) \sim \frac{1}{n}$, [Sharp][Rivin]
- corrections: $g \in F_{2}$, there is h such that $g h \in F_{2}^{\prime}$, with $|h| \leqslant|\alpha(g)|+4, \alpha(g)$ abelianization of g
- reorderings:

$$
u v w=v u\left[u^{-1}, v^{-1}\right] w=\operatorname{vuw}\left[w^{-1} u^{-1} w, w^{-1} v^{-1} w\right]
$$

Matching at size $\log n$ means $\operatorname{scl}\left(g_{n}\right) \leqslant n / \log n$

Thm[Culler]: If $g^{n} \in F_{2}^{\prime}$ (cyclically reduced) then there is a fatgraph S with $\chi(S)=1-\mathrm{cl}\left(g^{n}\right)$ and ∂S labelled by g^{n}

Def: A fatgraph is a graph with a cyclic ordering at each vertex.

fatgraphs \leftrightarrow surfaces

$\operatorname{scl}\left(g_{n}\right) \leqslant n / k(n)$ implies matching at scale $k(n)$
lower bound: random words in F_{2} generated by a Markov process.

upper bound: words of length $m=c_{3} \log n$, derived Markov chain with 3^{m} states
For each word v of length m, number of $v^{\prime} s=$ number of v^{-1} 's up to error of size \sqrt{n}, so $\operatorname{scl}(g) \leqslant n / m+\sqrt{n}$ mixing [Kahane]

Hyperbolic groups, word length

- fat graphs in handlebodies \leftrightarrow pleated surfaces in Mineyev's flow space
- unique geodesics in $F_{2} \leftrightarrow$ combing for regular language
- F_{2} Markov chain \leftrightarrow Markov chain on automata
- derived Markov chain \leftrightarrow derived Markov chain on automata
scl dual to quasimorphisms
Def: $\phi: G \rightarrow R$ such that $|\phi(g h)-\phi(g)-\phi(h)| \leqslant D(\phi)$
Thm[Bavard Duality]

$$
\operatorname{scl}(g)=\frac{1}{2} \sup _{\phi} \frac{|\phi(g)|}{D(\phi)}
$$

Example: $\phi: F_{2} \rightarrow \mathbb{Z}$, winding number

$\phi(g)=($ number of left turns - number of right turns) $/ 4$
Claim: $D(\phi)=1$, so $\operatorname{scl}([a, b]) \geqslant \frac{1}{2}$

