Growth rates for stable commutator length

Joseph Maher joseph.maher@csi.cuny.edu

College of Staten Island, CUNY

April 2011

Joint work with Danny Calegari, arXiv:math/1008.4952.

G group

commutator $[g, h] = ghg^{-1}h^{-1}$ commutator subgroup G' = [G, G]

Def: commutator length:

 $cl(g) = min\{n \mid g \text{ is a product of } n \text{ commutators } \}$

cl word metric on G' wrt to generating set of all commutators

Def: stable commutator length:

$$\operatorname{scl}(g) = \lim_{n \to \infty} \frac{1}{n} cl(g^n)$$

- scl is translation length of g on G'
- monotonic: $\phi : G \to H$ homomorphism, $scl(\phi(g)) \leq scl(g)$

Example: $F_2 = \langle a, b \mid \rangle$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

$$g = [a, b] = aba^{-1}b^{-1}$$

$$cl(g) = 1, \quad cl(g^{2}) = 2, \quad cl(g^{3}) = 2:$$

$$[a, b]^{3} = [aba^{-1}, b^{-1}aba^{-2}][b^{-1}ab, b^{2}]$$

so $scl([a, b]) \leq 2/3$

Topological version:

- Group G \leftrightarrow space X, $\pi_1 X = G$
- $g \in G \leftrightarrow$ homotopy class of loop γ in X
- conjugacy class of g \leftrightarrow free homotopy class of γ
- $g \in G' \leftrightarrow [\gamma] = 0 \in H_1(X) \leftrightarrow \gamma$ bounds a surface S

- $\mathsf{cl}(g) \leftrightarrow \inf\{\mathsf{genus}(S) \mid \partial S \to \gamma \text{ degree } 1\}$
- $\operatorname{scl}(g) \leftrightarrow \inf\{\frac{1}{n}\operatorname{genus}(S) \mid \partial S \to \gamma \text{ degree } n\}$

genus not multiplicative under covers, use Euler characteristic:

Def: $\operatorname{scl}(g) = \inf\{\frac{-1}{2n}\chi(S) \mid \partial S \to \gamma \text{ degree } n\}$

An *extremal* surface realizes scl, in fact $scl([a, b]) = \frac{1}{2}$

Generic elements in G:

• random word of length n

 S_n all elements of length n, uniform measure B_n all elements of length $\leq n$, uniform measure

• random walk of length n

uniform measure on symmetric generating set A $w_n = s_1 s_2 \dots s_n$, s_i chosen from A independently

Thm[Calegari-M]: G Gromov hyperbolic, there are constants c_1, c_2 such that

$$\mathbb{P}\left(c_1n/\log n\leqslant \mathsf{scl}(g_n)\leqslant c_2n/\log n
ight)
ightarrow 1$$
 as $n
ightarrow\infty$

[Calegari-Walker] F_k , $c = \log(2k - 1)/6$

Generic elements in G:

• random word of length n

 S_n all elements of length n, uniform measure B_n all elements of length $\leq n$, uniform measure

• random walk of length n

uniform measure on symmetric generating set A $w_n = s_1 s_2 \dots s_n$, s_i chosen from A independently

Thm[Calegari-M]: G Gromov hyperbolic, there are constants c_1, c_2 such that

$$\mathbb{P}\left(c_1n/\log n\leqslant \mathsf{scl}(w_n)\leqslant c_2n/\log n
ight)
ightarrow 1$$
 as $n
ightarrow\infty$

 $\phi: G \to H$ homorphism, then $\phi(w_n)$ random walk on H, so $scl(w_n) \leq c_2 n / \log n$ for any group.

F_2 word length version

- estimates: $\mathbb{P}(g_n \in F'_2) \sim \frac{1}{n}$, [Sharp][Rivin]
- corrections: $g \in F_2$, there is h such that $gh \in F'_2$, with $|h| \leq |\alpha(g)| + 4$, $\alpha(g)$ abelianization of g
- reorderings:

$$uvw = vu[u^{-1}, v^{-1}]w = vuw[w^{-1}u^{-1}w, w^{-1}v^{-1}w]$$

Matching at size log *n* means $scl(g_n) \leq n/\log n$

Thm[Culler]: If $g^n \in F'_2$ (cyclically reduced) then there is a fatgraph S with $\chi(S) = 1 - cl(g^n)$ and ∂S labelled by g^n

Def: A *fatgraph* is a graph with a cyclic ordering at each vertex.

 $fatgraphs \leftrightarrow surfaces$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $scl(g_n) \leq n/k(n)$ implies matching at scale k(n)

lower bound: random words in F_2 generated by a Markov process.

upper bound: words of length $m = c_3 \log n$, derived Markov chain with 3^m states

For each word v of length m, number of v's = number of v^{-1} 's up to error of size \sqrt{n} , so scl $(g) \leq n/m + \sqrt{n}$ mixing [Kahane]

Hyperbolic groups, word length

- fat graphs in handlebodies \leftrightarrow pleated surfaces in Mineyev's flow space
- unique geodesics in $F_2 \leftrightarrow$ combing for regular language
- F_2 Markov chain \leftrightarrow Markov chain on automata
- derived Markov chain \leftrightarrow derived Markov chain on automata

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

scl dual to quasimorphisms

Def: $\phi: G \to R$ such that $|\phi(gh) - \phi(g) - \phi(h)| \leq D(\phi)$

Thm[Bavard Duality]

$$\operatorname{scl}(g) = rac{1}{2} \sup_{\phi} rac{|\phi(g)|}{D(\phi)}$$

Example: $\phi: F_2 \to \mathbb{Z}$, winding number $\phi(g) = ($ number of left turns - number of right turns)/4

Claim: $D(\phi) = 1$, so scl $([a, b]) \ge \frac{1}{2}$