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A random walk on Z
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At time t = 0 start at w0 = 0

wt+1 =

{
wt + 1 with probability 1/2
wt − 1 with probability 1/2



-4 -3 -2 -1 0 1 2 3 4

t = 0 1
t = 1 1 0 1 /2
t = 2 1 0 2 0 1 /4
t = 3 1 0 3 0 3 0 1 /8
t = 4 1 0 4 0 6 0 4 0 1 /16

In general P(wt = t − 2k) = 1
2t

(
t
k

)
Average distance from 0 is E(|wt |) ∼

√
t

P(wt = 0) ∼ 1√
t

=⇒ P(wt hits 0 infinitely often) = 1

We say the random walk on Z is recurrent.



A random walk on Z2
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This is really two independent random walks on Z, so
P(wt = (0, 0)) ∼ 1

t .
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The random walk on Z2 is also recurrent.
Fact: P(wt = 0) ∼ t−n/2 for Zn.
Random walks on Zn are transient for n > 3.



The nearest neighbour random walk on a (finite valence) graph:

• Start at a particular vertex v0 at time 0.

• At time t jump to one of your nearest neighbours, chosen
with equal probability.

The random walk on a four-valent tree is transient, i.e.

P(random walk hits v0 finitely often) = 1.

The random walk makes linear progress, E(d(v0,wt)) ∼ t.



Random walks on groups:

Pick a (symmetric) generating set A.

The Cayley graph of a finitely generated group is the graph with

• vertices: elements of the group

• edges: connect elements which differ by a generator

The graph depends on the choice of generating set A, but any two
choices give quasi-isometric graphs.
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F2 = 〈a, b | 〉

group elements: aba−1

(aba−1)(ab) = abaa−1b = ab2

Thm[Kesten, Day]: A random walk on a group has a linear rate of
escape iff the group is non-amenable



SL(2,Z): 2× 2 integer matrices with determinant +1[
a b
c d

]
acts on C by z 7→ az+b

cz+d , preserves upper half space.

real axis[
1 1
0 1

]
↔ z 7→ z + 1

[
0 −1
1 0

]
↔ z 7→ −1/z
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PSL(2,Z)

Sample paths converge to the boundary with probability one.

This gives a measure on the boundary, called harmonic measure ν.

ν(X ) = P(probability you converge to X )



Harmonic measure is not Lebesgue measure

? :
1

a1 + 1
a2+...

7→
a1︷ ︸︸ ︷

0.0 . . . 0

a2︷ ︸︸ ︷
1 . . . 1 . . .
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Lebesgue measure: P(ai = n) ∼ 1
n2

Harmonic measure: P(ai = n) ∼ 1
2n



Hermann Minkowski, 1904.



Generic elements in groups.

A subset X ⊂ G is generic if it has

• High probability:

P(wn ∈ X )→ 1, as n→∞.
• High density:

|X ∩ Bn(1)|
|G ∩ Bn(1)| → 1, as n→∞.

• High density with respect to some other metric on G .

Example: F2 × 0 ⊂ F2 × Z



Convergence to the boundary works for:
matrix groups, e.g. SL(n,Z) [Furstenberg]

• random matrices are irreducible [Rivin][Kowalski]

δ-hyperbolic groups [Kaimanovich-Woess]

• random elements are hyperbolic,
translation length tends to infinity

Mapping class groups, braid groups [Kaimanovich-Masur]

• random elements are pseudo-Anosov [Rivin][Kowalski][M]



Surface or 2-manifold: space locally modelled on R2

⊂ R2

Classification of surfaces

S2 T 2 = S1 × S1 genus 2

Add handles:



The mapping class group of a surface Σ is

G = {surface homeomorphisms}/isotopy.

The mapping class group is finitely generated by Dehn twists.



Thurston’s classification of surface homeomorphisms

Reducible:

Periodic:

Pseudo-Anosov: everything else



Anosov: A ∈ SL(2,Z) with trace > 2, e.g.

(
2 1
1 1

)
.

Pseudo-Anosov: e.g. branched cover of an Anosov map.



Application to 3-manifolds: Heegaard splittings

handlebody
gluing map wn

handlebody

M(wn)

• [M] P(M(wn) is hyperbolic)→ 1 as n→∞.

• [M] vol(M(wn)) grows linearly n.

[Dunfield-W. Thurston] P(M(wn) is Q− homology sphere)→ 1.

[Dunfield-D. Thurston] P(M(wn) is fibered)→ 0. (genus 2)



The mapping class group G acts on the complex of curves C(Σ).

C(Σ) is a simplicial complex.

• vertices: isotopy classes of simple closed curves.
• simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

[Masur-Minsky] C(Σ) is δ-hyperbolic.



The mapping class group G acts on the complex of curves C(Σ).

C(Σ) is a simplicial complex.

• vertices: isotopy classes of simple closed curves.
• simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

[Masur-Minsky] C(Σ) is δ-hyperbolic.



[Gromov] A metric space is δ-hyperbolic if every geodesic triangle
is δ-thin, i.e. any side is contained in a δ-neighbourhood of the
other two.

Examples: hyperbolic space, trees, the complex of curves C(S).

Isometries of δ-hyperbolic spaces are:

• elliptic, fix a point in the interior (periodic, reducible)

• parabolic (none of these in G )

• hyperbolic (pseudo-Anosov)


