Random walks on graphs and groups

Joseph Maher
joseph.maher@csi.cuny.edu
CUNY College of Staten Island

April 2011

A random walk on \mathbb{Z}

$$
\begin{array}{lllllll}
-3 & -2 & -1 & 0 & 1 & 2 & 3
\end{array}
$$

At time $t=0$ start at $w_{0}=0$

$$
w_{t+1}=\left\{\begin{array}{l}
w_{t}+1 \text { with probability } 1 / 2 \\
w_{t}-1 \text { with probability } 1 / 2
\end{array}\right.
$$

	-4	-3	-2	-1	0	1	2	3	4	
$t=0$					1					
$t=1$			1	0	1				$/ 2$	
$t=2$		1	0	3	0	0	1			$/ 4$
$t=3$		0	4	0	6	0	4	0	1	$/ 16$
$t=4$	1	0								
In general		$\mathbb{P}\left(w_{t}=t-2 k\right)=\frac{1}{2^{t}}\binom{t}{k}$								

Average distance from 0 is $\mathbb{E}\left(\left|w_{t}\right|\right) \sim \sqrt{t}$
$\mathbb{P}\left(w_{t}=0\right) \sim \frac{1}{\sqrt{t}} \Longrightarrow \mathbb{P}\left(w_{t}\right.$ hits 0 infinitely often $)=1$
We say the random walk on \mathbb{Z} is recurrent.

A random walk on \mathbb{Z}^{2}

This is really two independent random walks on \mathbb{Z}, so $\mathbb{P}\left(w_{t}=(0,0)\right) \sim \frac{1}{t}$.

The nearest neighbour random walk on a (finite valence) graph:

- Start at a particular vertex v_{0} at time 0 .
- At time t jump to one of your nearest neighbours, chosen with equal probability.

The random walk on a four-valent tree is transient, i.e.

$$
\mathbb{P}\left(\text { random walk hits } v_{0} \text { finitely often }\right)=1
$$

The random walk makes linear progress, $\mathbb{E}\left(d\left(v_{0}, w_{t}\right)\right) \sim t$.

Random walks on groups:
Pick a (symmetric) generating set A.
The Cayley graph of a finitely generated group is the graph with

- vertices: elements of the group
- edges: connect elements which differ by a generator

The graph depends on the choice of generating set A, but any two choices give quasi-isometric graphs.

$$
\begin{aligned}
& F_{2}=\langle a, b \mid\rangle \\
& \text { group elements: } a b a^{-1} \\
& \left(a b a^{-1}\right)(a b)=a b a a^{-1} b=a b^{2}
\end{aligned}
$$

Thm[Kesten, Day]: A random walk on a group has a linear rate of escape iff the group is non-amenable
$S L(2, \mathbb{Z}): 2 \times 2$ integer matrices with determinant +1
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ acts on \mathbb{C} by $z \mapsto \frac{a z+b}{c z+d}$, preserves upper half space.

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \leftrightarrow z \mapsto z+1 \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \leftrightarrow z \mapsto-1 / z
$$

Sample paths converge to the boundary with probability one.
This gives a measure on the boundary, called harmonic measure ν. $\nu(X)=\mathbb{P}$ (probability you converge to X)

Harmonic measure is not Lebesgue measure

$$
?: \frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}} \mapsto \overbrace{0.0 \ldots 0}^{a_{1}} \overbrace{1 \ldots 1}^{a_{2}} \ldots
$$

$$
\begin{array}{|cccccccc|}
\frac{0}{1} & & & & & & & \\
& \frac{1}{16} & \frac{1}{8} & \frac{3}{16} & 1 & \frac{5}{16} & \frac{3}{8} & \frac{7}{16} \\
\hline & 1 & 1 & 1 & 1 & 1 \\
\hline & \frac{1}{5} & \frac{1}{4} & \frac{2}{7} & 1 & \frac{3}{8} & \frac{2}{2} & \frac{3}{7} \\
\mid
\end{array}
$$

Lebesgue measure: $\mathbb{P}\left(a_{i}=n\right) \sim \frac{1}{n^{2}}$
Harmonic measure: $\mathbb{P}\left(a_{i}=n\right) \sim \frac{1}{2^{n}}$

Fig. 7.
Kriterium für die reellen quadratischen Irrationalzablen.

Hermann Minkowski, 1904.

Generic elements in groups.
A subset $X \subset G$ is generic if it has

- High probability:

$$
\mathbb{P}\left(w_{n} \in X\right) \rightarrow 1, \text { as } n \rightarrow \infty
$$

- High density:

$$
\frac{\left|X \cap B_{n}(1)\right|}{\left|G \cap B_{n}(1)\right|} \rightarrow 1, \text { as } n \rightarrow \infty
$$

- High density with respect to some other metric on G.

Example: $F_{2} \times 0 \subset F_{2} \times \mathbb{Z}$

Convergence to the boundary works for: matrix groups, e.g. $\mathrm{SL}(\mathrm{n}, \mathbb{Z})$ [Furstenberg]

- random matrices are irreducible [Rivin][Kowalski]
δ-hyperbolic groups [Kaimanovich-Woess]
- random elements are hyperbolic, translation length tends to infinity

Mapping class groups, braid groups [Kaimanovich-Masur]

- random elements are pseudo-Anosov [Rivin][Kowalski][M]

Surface or 2-manifold: space locally modelled on \mathbb{R}^{2}

Classification of surfaces

Add handles:

The mapping class group of a surface Σ is

$$
G=\{\text { surface homeomorphisms }\} / \text { isotopy } .
$$

The mapping class group is finitely generated by Dehn twists.

Thurston's classification of surface homeomorphisms
Reducible:

Periodic:

Pseudo-Anosov: everything else

Anosov: $A \in S L(2, \mathbb{Z})$ with trace >2, e.g. $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.

Pseudo-Anosov: e.g. branched cover of an Anosov map.

Application to 3-manifolds: Heegaard splittings

- $[\mathrm{M}] \mathbb{P}\left(M\left(w_{n}\right)\right.$ is hyperbolic $) \rightarrow 1$ as $n \rightarrow \infty$.
- $[\mathrm{M}] \operatorname{vol}\left(M\left(w_{n}\right)\right)$ grows linearly n.
[Dunfield-W. Thurston] $\mathbb{P}\left(M\left(w_{n}\right)\right.$ is \mathbb{Q} - homology sphere $) \rightarrow 1$.
[Dunfield-D. Thurston] $\mathbb{P}\left(M\left(w_{n}\right)\right.$ is fibered) $\rightarrow 0$. (genus 2)

The mapping class group G acts on the complex of curves $\mathcal{C}(\Sigma)$.
$\mathcal{C}(\Sigma)$ is a simplicial complex.

- vertices: isotopy classes of simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.
[Masur-Minsky] $\mathcal{C}(\Sigma)$ is δ-hyperbolic.

The mapping class group G acts on the complex of curves $\mathcal{C}(\Sigma)$.
$\mathcal{C}(\Sigma)$ is a simplicial complex.

- vertices: isotopy classes of simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.
[Masur-Minsky] $\mathcal{C}(\Sigma)$ is δ-hyperbolic.
[Gromov] A metric space is δ-hyperbolic if every geodesic triangle is δ-thin, i.e. any side is contained in a δ-neighbourhood of the other two.

Examples: hyperbolic space, trees, the complex of curves $\mathbb{C}(S)$.
Isometries of δ-hyperbolic spaces are:

- elliptic, fix a point in the interior (periodic, reducible)
- parabolic (none of these in G)
- hyperbolic (pseudo-Anosov)

