Random walks on the mapping class group

Joseph Maher
maher@math.okstate.edu
Oklahoma State University

May 2008

- Random walks
- Random walks on the mapping class group

Theorem: A random walk on the mapping class group gives a pseudo-Anosov element with asymptotic probability one.

- Random Heegaard splittings

Theorem: A random Heegaard splitting is hyperbolic with asymptotic probability one.

A random walk on \mathbb{Z}

At time $t=0$ start at $w_{0}=0$

$$
w_{t+1}=\left\{\begin{array}{l}
w_{t}+1 \text { with probability } 1 / 2 \\
w_{t}-1 \text { with probability } 1 / 2
\end{array}\right.
$$

The nearest neighbour random walk on a (finite valence) graph:

- Start at a particular vertex at time 0 .
- At time n jump to one of your nearest neighbours, chosen with equal probability.

Random walks on groups:
Pick a (symmetric) generating set A.
The Cayley graph of a finitely generated group is the graph with

- vertices: elements of the group
- edges: connect elements which differ by a generator

The graph depends on the choice of generating set A, but any two choices give quasi-isometric graphs.

Example of a Cayley graph:

Key example: the nearest neighbour random walk on a Cayley graph of the mapping class group.

- Start at the identity at time 0 .
- At time n jump to one of your nearest neighbours, chosen with equal probability.

More generally: pick a probability distribution μ on G.
Consider the Markov chain with set G, and transition probabilities $p(x, y)=\mu\left(x^{-1} y\right)$.

Time 0: start at identity.
Time 1: distributed according to μ.
Time 2: distributed according to $\mu^{2}=$ convolution of μ with itself.

$$
\mu^{2}(x)=\sum_{y \in G} \mu(y) \mu\left(y^{-1} x\right)
$$

Time n : distributed according to μ^{n}, n-fold convolution of μ with itself.

Path space: $\left(G^{\mathbb{Z}_{+}}, \mathbb{P}\right)$, probability space.
$G^{\mathbb{Z}_{+}}$infinite product of G 's.
A sample path $\omega \in G^{\mathbb{Z}_{+}}$is an infinite sequence of group elements corresponding to the locations of the random walk.

Projection $w_{n}: G^{\mathbb{Z}_{+}} \rightarrow G$ to the n-th factor is a random variable which gives the location of the sample path at time n.

The distribution of w_{n} is given by μ^{n}.
[Kolmogorov] This determines \mathbb{P}.
Key point: this enables us to talk about infinite length random walks.

Example: PSL(2,Z $)$

Sample paths converge to the boundary with probability one. This gives a measure on the boundary, called harmonic measure ν. $\nu(X)=\mathbb{P}$ (sample paths which converge to points in X)

This harmonic measure on S^{1} is not Lebesgue measure.

$$
\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}} \longmapsto \overbrace{0.0}^{a_{1}} \overbrace{1 \ldots 0}^{a_{2}} \ldots
$$

Convergence to the boundary works for:
matrix groups, e.g. $\mathrm{SL}(\mathrm{n}, \mathbb{Z})$ [Furstenberg]

- random matrices are irreducible [Rivin, Kowalski]
δ-hyperbolic groups [Kaimanovich-Woess]
- random elements are hyperbolic, translation length tends to infinity

Mapping class groups, braid groups [Kaimanovich-Masur]

- random elements are pseudo-Anosov [M]

The mapping class group of a surface S is \{surface diffeomorphisms\}/isotopy.
$G=\operatorname{MCG}(S)=\operatorname{Diff}^{+}(S) / \operatorname{Diff}_{0}(S)$

The mapping class group is finitely generated by Dehn twists.

The surface S may have boundary or punctures

The mapping class group of the n-punctured disc is also known as the braid group.

Thurston's classification of surface homeomorphisms

- Reducible:

The map fixes a disjoint collection of simple closed curves.

- Periodic:

Some power of the map is isotopic to the identity.

- Pseudo-Anosov:

Everything else...

Useful facts about the mapping class group.
[Masur-Minksy] The mapping class group is weakly relative hyperbolic.
G finitely generated by A, gives word metric on G (same as Cayley graph metric).
$\widehat{G}=G$ with word metric from an infinite generating set $A \cup\left\{H_{i}\right\}$. In this case $H_{i}=\operatorname{stab}\left(\alpha_{i}\right)$, where α_{i} are representatives of simple closed curves under the action of G.

If \widehat{G} is δ-hyperbolic then we say that G is weakly relatively hyperbolic (with respect to $\left\{H_{i}\right\}$).

Recall a metric space is δ-hyperbolic if every geodesic triangle is δ-thin, i.e. any side is contained in a δ-neighbourhood of the other two.

Examples: hyperbolic space, trees, the complex of curves $\mathcal{C}(S)$.
[Masur-Minksy] show that the relative space \widehat{G} is quasi-isometric to the complex of curves.

The complex of curves is a simplicial complex.

- vertices: isotopy classes of simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.
[Masur-Minsky] the complex of curves is δ-hyperbolic.

Isometries of δ-hyperbolic spaces are

- elliptic, fix a point in the interior (periodic, reducible)
- parabolic (none of these)
- hyperbolic (pseudo-Anosov)

Gromov boundary: $\{$ set of quasi-geodesic rays $\} / \sim$ Two rays are equivalent if they stay a bounded distance apart.
[Klarreich] The Gromov boundary of the complex of curves is $\mathcal{F}_{\text {min }}$ the space of minimal foliations in PMF, Thurston's space of projective measured foliations.

PMF is a sphere of dimension $6 g-5, g=$ genus of S.
pseudo-Anosov maps act on $\mathcal{C}(S) \cup \mathcal{F}_{\text {min }}$ as translations along an axis with a unique pair of fixed points, the attracting and repelling fixed points.
[Kaimanovich-Masur, + Klarreich] A random walk on the mapping class group converges almost surely to a uniquely ergodic foliation in PMF, as long as the support of μ is a non-elementary subgroup. The resulting harmonic measure ν on $\mathcal{F}_{\text {min }}$ is non-atomic.
uniquely ergodic \Rightarrow minimal
non-elementary: the subgroup contains a pair of pseudo-Anosov elements with distinct endpoints.

Recall $\nu(X)=$ proportion of sample paths which converge into X.
ν governs the long time behaviour of sample paths.

Theorem [Rivin, Kowalski]: The probability that $w_{n}(\omega)$ is pseudo-Anosov tends to 1 as $n \rightarrow \infty$.

Consider the action on homology, i.e. map from G to $\operatorname{Sp}(2 g, \mathbb{Z})$. [Casson-Bleiler] If image of g is irreducible, no roots of unity as eigenvalues, characteristic polynomial not a power of a lower degree polynomial, then g is pseudo-Anosov.

Theorem [M]: The probability that the translation length of $w_{n}(\omega)$ on $\mathcal{C}(S)$ is at most K tends to zero as $n \rightarrow \infty$.
Requires support of μ generates a non-elementary subgroup not contained in a centralizer.

Translation length of $g: \lim \frac{1}{n} d_{\mathcal{C}(S)}\left(x, g^{n} x\right)$.

Sketch of proof.
Observation: if $X \subset G$ and limit set of X has (harmonic) measure zero in $\mathcal{F}_{\text {min }}$, then the random walk is transient on X. (A sample path hits X finitely many times almost surely.)

Let $R=$ elements of G of translation length at most K. Then $\nu(\bar{R})=1$.

Let $R_{k}=k$-dense elements of R, i.e. $r \in R$ such that there is some other $r^{\prime} \in R$ such that $d_{G}\left(r, r^{\prime}\right) \leqslant k$.

Claim: $\nu\left(\bar{R}_{k}\right)=0$.

$\mathbb{P}\left(w_{n}(\omega) \in R\right)=\mathbb{P}\left(w_{n}(\omega) \in R_{k}\right)+\mathbb{P}\left(w_{n} \in R \backslash R_{k}\right)$

- $\mathbb{P}\left(w_{n}(\omega) \in R_{k}\right) \rightarrow 0$ as $n \rightarrow \infty$ by transience.
- $\mathbb{P}\left(w_{n}(\omega) \in R \backslash R_{k}\right) \leqslant 1 / k$

True for all k implies $\mathbb{P}\left(w_{n}(\omega)\right) \rightarrow 0$ as $n \rightarrow \infty$.

More details:
$\bar{R}_{k}=\bigcup \overline{C(g)}$, where word length of g at most k.
$C(g)=$ centralizer of g, i.e. $h \in G$ such that $g h=h g$.

- g pseudo-Anosov: $C(g)$ virtually cyclic, limit set is fixed points.
- g reducible: centralizer bounded diameter in \widehat{G}, limit set empty.
- g periodic: $\overline{C(g)}$ lower dimensional sphere.
[Nielsen] a finite cyclic subgroup of G fixes a point in Teichmüller space $=$ set of hyperbolic structures on S.
\Rightarrow finite cyclic groups realized by covering translations.
So fixed set is lower dimensional Teichmüller space inside original one, so limit set is a lower dimensional PMF inside original one. [distance reducing maps $G \rightarrow \mathcal{T}(S) \rightarrow \widehat{G}$]

Relative conjugacy bounds:
If a and b are conjugate in G then there is a conjugating word w such that $|\widehat{w}| \leqslant K(|\widehat{a}|+|\widehat{b}|)$.
[Masur-Minksy] Version for pseudo-Anosov elements using word length.

This implies if g is conjugate to a short word s, and w is a shortest conjugating word in the relative metric, then the path $w s w^{-1}$ is a quasi-geodesic path, where the quasi-geodesic constants depend on the length of s.

s has bounded length, so thin triangles implies if w very long, then a final segment of w fellow-travels with an initial segment of w^{-1}.
So red path is a short conjugate of s, so could have chosen a shorter conjugating word.

If $r \in R_{k}$, then there is g of word length at most k such that $r g=r^{\prime} \in R_{k}$, so R_{k} is a finite union of $R \cap R g$.

Claim: $\overline{R \cap R g}=\overline{C(g)}$

$r=w s w^{-1}$ and $r^{\prime}=w^{\prime} s^{\prime} w^{\prime-1}$, paths are quasi-geodesic, so fellow travel. Write $w=x y, w^{\prime}=x y^{\prime}$, for y, y^{\prime} of bounded length.
$x^{-1} g x$ short group element, so conjugate by short z to g.
$x^{-1} g x=z g z^{-1} \Rightarrow g(x z)=(x z) g \Rightarrow x$ close to $C(g)$.

Random Heegaard splittings.

Theorem [M]: The probability that the splitting distance of $M\left(w_{n}\right)$ is at most K tends to zero as n tends to infinity.
Requires support of μ generates a subgroup which is dense in the boundary.

Given S as the boundary of a handlebody H, the disc set Δ is the collection of simple closed curves which bound discs in H.

A Heegaard splitting has two handlebodies, with disc sets Δ and $w_{n} \Delta$.

Splitting distance: minimum distance between Δ and $w_{n} \Delta$ in $\mathcal{C}(S)$.
[T. Kobayashi;Hempel] If the splitting distance is more than two, then M is irreducible, atoroidal and not Seifert fibered.
[Perelmann] Geometrization $\Rightarrow M$ is hyperbolic.
Corollary: Probability $M\left(w_{n}\right)$ is hyperbolic tends to 1 as $n \rightarrow \infty$.

[Kerckhoff] Limit set of Δ has harmonic measure zero.
[Masur-Minsky] Disc set is quasi-convex.
Need to understand (joint) distribution of attracting and repelling endpoints.

If g is pseudo-Anosov let $\lambda^{+}(g)$ be the attracting fixed point and let $\lambda^{-}(g)$ be the repelling fixed point.

Define $\lambda_{n}: G^{\mathbb{Z}_{+}} \rightarrow \mathcal{F}_{\text {min }} \times \mathcal{F}_{\text {min }} \cup \varnothing$ by $\omega \mapsto\left(\lambda^{+}\left(w_{n}(\omega)\right), \lambda^{-}\left(w_{n}(\omega)\right)\right)$ if $w_{n}(\omega)$ is pseudo-Anosov.

Claim: $\lambda_{n} \rightarrow \nu \times \widetilde{\nu}$ as $n \rightarrow \infty$.
Reflected harmonic measure $\widetilde{\nu}$ is harmonic measure determined by the random walk generated by the reflected measure $\widetilde{\mu}(g)=\mu\left(g^{-1}\right)$.

Halfspace: $H(1, x)=\{y \in \widehat{G} \mid \widehat{d}(y, x) \leqslant \widehat{d}(y, 1)\}$.

If the translation length of g is bigger than $K(\delta)$, then $\lambda^{+}(g) \in H(1, g)$, and $\lambda^{-}(g) \in H\left(1, g^{-1}\right)$.

So $\lambda_{n} \sim\left(w_{n}, w_{n}^{-1}\right)$.

$\mathbb{P}\left(w_{2 n}(\omega) \in H\left(1, w_{n}(\omega)\right)\right) \rightarrow 1$ as $n \rightarrow \infty$.
$\mathbb{P}\left(w_{2 n}^{-1}(\omega) \in H\left(1, w_{2 n}^{-1} w_{n}(\omega)\right)\right) \rightarrow 1$ as $n \rightarrow \infty$.
So $\left(w_{2 n}, w_{2 n}^{-1}\right) \sim\left(w_{n}, w_{2 n}^{-1} w_{n}\right)$.
If $w_{2 n}=s_{1} \ldots s_{n} s_{n+1} \ldots s_{2 n}$, then $w_{n}=s_{1} \ldots s_{n}$ and $w_{2 n}^{-1} w_{n}=s_{2 n}^{-1} \ldots s_{n+1}^{-1}$, are independent.

