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• Random walks

• Random walks on the mapping class group

Theorem: A random walk on the mapping class group gives a
pseudo-Anosov element with asymptotic probability one.

• Random Heegaard splittings

Theorem: A random Heegaard splitting is hyperbolic with
asymptotic probability one.



A random walk on Z
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At time t = 0 start at w0 = 0

wt+1 =

{
wt + 1 with probability 1/2
wt − 1 with probability 1/2



The nearest neighbour random walk on a (finite valence) graph:

• Start at a particular vertex at time 0.
• At time n jump to one of your nearest neighbours, chosen with
equal probability.

Random walks on groups:

Pick a (symmetric) generating set A.
The Cayley graph of a finitely generated group is the graph with

• vertices: elements of the group

• edges: connect elements which differ by a generator

The graph depends on the choice of generating set A, but any two
choices give quasi-isometric graphs.



Example of a Cayley graph:

F2 = 〈a, b |〉
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Key example: the nearest neighbour random walk on a Cayley
graph of the mapping class group.

• Start at the identity at time 0.
• At time n jump to one of your nearest neighbours, chosen with
equal probability.



More generally: pick a probability distribution µ on G .
Consider the Markov chain with set G , and transition probabilities
p(x , y) = µ(x−1y).

Time 0: start at identity.
Time 1: distributed according to µ.
Time 2: distributed according to µ2 = convolution of µ with itself.

µ2(x) =
∑
y∈G

µ(y)µ(y−1x)

Time n: distributed according to µn, n-fold convolution of µ with
itself.



Path space: (GZ+ , P), probability space.

GZ+ infinite product of G ’s.

A sample path ω ∈ GZ+ is an infinite sequence of group elements
corresponding to the locations of the random walk.

Projection wn : GZ+ → G to the n-th factor is a random variable
which gives the location of the sample path at time n.

The distribution of wn is given by µn.

[Kolmogorov] This determines P.

Key point: this enables us to talk about infinite length random
walks.



Example: PSL(2,Z)

0

1

1

0

1

1

2

1

1

2

3

1

3

2

2

3

1

3

PSL(2,Z)

Sample paths converge to the boundary with probability one.
This gives a measure on the boundary, called harmonic measure ν.
ν(X ) = P(sample paths which converge to points in X )



This harmonic measure on S1 is not Lebesgue measure.
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Convergence to the boundary works for:

matrix groups, e.g. SL(n,Z) [Furstenberg]
• random matrices are irreducible [Rivin, Kowalski]

δ-hyperbolic groups [Kaimanovich-Woess]
• random elements are hyperbolic,
translation length tends to infinity

Mapping class groups, braid groups [Kaimanovich-Masur]
• random elements are pseudo-Anosov [M]



The mapping class group of a surface S is
{surface diffeomorphisms}/isotopy.
G = MCG(S) = Diff+(S)/Diff0(S)

The mapping class group is finitely generated by Dehn twists.



The surface S may have boundary or punctures

The mapping class group of the n-punctured disc is also known as
the braid group.

Thurston’s classification of surface homeomorphisms

• Reducible:

The map fixes a disjoint collection of simple closed curves.



• Periodic:

Some power of the map is isotopic to the identity.

• Pseudo-Anosov:

Everything else...



Useful facts about the mapping class group.

[Masur-Minksy] The mapping class group is weakly relative
hyperbolic.

G finitely generated by A, gives word metric on G (same as Cayley
graph metric).

Ĝ = G with word metric from an infinite generating set A ∪ {Hi}.
In this case Hi = stab(αi ), where αi are representatives of simple
closed curves under the action of G .

If Ĝ is δ-hyperbolic then we say that G is weakly relatively
hyperbolic (with respect to {Hi}).



Recall a metric space is δ-hyperbolic if every geodesic triangle is
δ-thin, i.e. any side is contained in a δ-neighbourhood of the other
two.

Examples: hyperbolic space, trees, the complex of curves C(S).

[Masur-Minksy] show that the relative space Ĝ is quasi-isometric
to the complex of curves.



The complex of curves is a simplicial complex.

• vertices: isotopy classes of simple closed curves.
• simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

[Masur-Minsky] the complex of curves is δ-hyperbolic.



Isometries of δ-hyperbolic spaces are
• elliptic, fix a point in the interior (periodic, reducible)
• parabolic (none of these)
• hyperbolic (pseudo-Anosov)

Gromov boundary: { set of quasi-geodesic rays }/ ∼
Two rays are equivalent if they stay a bounded distance apart.

[Klarreich] The Gromov boundary of the complex of curves is Fmin

the space of minimal foliations in PMF , Thurston’s space of
projective measured foliations.

PMF is a sphere of dimension 6g − 5, g = genus of S .

pseudo-Anosov maps act on C(S) ∪ Fmin as translations along an
axis with a unique pair of fixed points, the attracting and repelling
fixed points.



[Kaimanovich-Masur, + Klarreich] A random walk on the mapping
class group converges almost surely to a uniquely ergodic foliation
in PMF , as long as the support of µ is a non-elementary subgroup.
The resulting harmonic measure ν on Fmin is non-atomic.

uniquely ergodic ⇒ minimal

non-elementary: the subgroup contains a pair of pseudo-Anosov
elements with distinct endpoints.

Recall ν(X ) = proportion of sample paths which converge into X .

ν governs the long time behaviour of sample paths.



Theorem [Rivin, Kowalski]: The probability that wn(ω) is
pseudo-Anosov tends to 1 as n →∞.

Consider the action on homology, i.e. map from G to Sp(2g , Z).

[Casson-Bleiler] If image of g is irreducible, no roots of unity as
eigenvalues, characteristic polynomial not a power of a lower
degree polynomial, then g is pseudo-Anosov.

Theorem [M]: The probability that the translation length of wn(ω)
on C(S) is at most K tends to zero as n →∞.

Requires support of µ generates a non-elementary subgroup not
contained in a centralizer.

Translation length of g : lim 1
ndC(S)(x , gnx).



Sketch of proof.

Observation: if X ⊂ G and limit set of X has (harmonic) measure
zero in Fmin, then the random walk is transient on X . (A sample
path hits X finitely many times almost surely.)

Let R = elements of G of translation length at most K . Then
ν(R) = 1.

Let Rk = k-dense elements of R, i.e. r ∈ R such that there is
some other r ′ ∈ R such that dG (r , r ′) 6 k.

Claim: ν(Rk) = 0.



Rk

Fmin

Ĝ

P(wn(ω) ∈ R) = P(wn(ω) ∈ Rk) + P(wn ∈ R \ Rk)

• P(wn(ω) ∈ Rk) → 0 as n →∞ by transience.

• P(wn(ω) ∈ R \ Rk) 6 1/k

True for all k implies P(wn(ω)) → 0 as n →∞.



More details:

Rk =
⋃

C (g), where word length of g at most k.

C (g) = centralizer of g , i.e. h ∈ G such that gh = hg .

• g pseudo-Anosov: C (g) virtually cyclic, limit set is fixed points.

• g reducible: centralizer bounded diameter in Ĝ , limit set empty.

• g periodic: C (g) lower dimensional sphere.

[Nielsen] a finite cyclic subgroup of G fixes a point in Teichmüller
space = set of hyperbolic structures on S .

⇒ finite cyclic groups realized by covering translations.

So fixed set is lower dimensional Teichmüller space inside original
one, so limit set is a lower dimensional PMF inside original one.

[ distance reducing maps G → T (S) → Ĝ ]



Relative conjugacy bounds:

If a and b are conjugate in G then there is a conjugating word w
such that |ŵ | 6 K (|â|+ |b̂|).

[Masur-Minksy] Version for pseudo-Anosov elements using word
length.

This implies if g is conjugate to a short word s, and w is a shortest
conjugating word in the relative metric, then the path wsw−1 is a
quasi-geodesic path, where the quasi-geodesic constants depend on
the length of s.
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s has bounded length, so thin triangles implies if w very long, then
a final segment of w fellow-travels with an initial segment of w−1.

So red path is a short conjugate of s, so could have chosen a
shorter conjugating word.

If r ∈ Rk , then there is g of word length at most k such that
rg = r ′ ∈ Rk , so Rk is a finite union of R ∩ Rg .



Claim: R ∩ Rg = C (g)
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r = wsw−1 and r ′ = w ′s ′w ′−1, paths are quasi-geodesic, so fellow
travel. Write w = xy , w ′ = xy ′, for y , y ′ of bounded length.

x−1gx short group element, so conjugate by short z to g .

x−1gx = zgz−1 ⇒ g(xz) = (xz)g ⇒ x close to C (g).



Random Heegaard splittings.

handlebody handlebody

M(wn)

gluing map wn

Theorem [M]: The probability that the splitting distance of M(wn)
is at most K tends to zero as n tends to infinity.

Requires support of µ generates a subgroup which is dense in the
boundary.

Given S as the boundary of a handlebody H, the disc set ∆ is the
collection of simple closed curves which bound discs in H.



A Heegaard splitting has two handlebodies, with disc sets ∆ and
wn∆.

Splitting distance: minimum distance between ∆ and wn∆ in C(S).

[T. Kobayashi;Hempel] If the splitting distance is more than two,
then M is irreducible, atoroidal and not Seifert fibered.

[Perelmann] Geometrization ⇒ M is hyperbolic.

Corollary: Probability M(wn) is hyperbolic tends to 1 as n →∞.



∆

wn∆

axis of wn

[Kerckhoff] Limit set of ∆ has harmonic measure zero.

[Masur-Minsky] Disc set is quasi-convex.

Need to understand (joint) distribution of attracting and repelling
endpoints.



If g is pseudo-Anosov let λ+(g) be the attracting fixed point and
let λ−(g) be the repelling fixed point.

Define λn : GZ+ → Fmin ×Fmin ∪∅
by ω 7→ (λ+(wn(ω)), λ−(wn(ω))) if wn(ω) is pseudo-Anosov.

Claim: λn → ν × ν̃ as n →∞.

Reflected harmonic measure ν̃ is harmonic measure determined by
the random walk generated by the reflected measure
µ̃(g) = µ(g−1).

Halfspace: H(1, x) = {y ∈ Ĝ | d̂(y , x) 6 d̂(y , 1)}.
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If the translation length of g is bigger than K (δ), then
λ+(g) ∈ H(1, g), and λ−(g) ∈ H(1, g−1).

So λn ∼ (wn,w
−1
n ).
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P(w2n(ω) ∈ H(1,wn(ω))) → 1 as n →∞.

P(w−1
2n (ω) ∈ H(1,w−1

2n wn(ω))) → 1 as n →∞.

So (w2n,w
−1
2n ) ∼ (wn,w

−1
2n wn).

If w2n = s1 . . . snsn+1 . . . s2n, then wn = s1 . . . sn and
w−1

2n wn = s−1
2n . . . s−1

n+1, are independent.


