Sample problems for Exam 3 for Math 233

This sample exam has many more questions than the actual exam will have.

1. Show that the following limits do not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y+x y^{2}}{x^{2}+y^{2}} \quad \lim _{(x, y) \rightarrow(0,0)} \frac{(x y)^{2}}{x^{4}+y^{4}}
$$

2. Compute $\nabla f(1,2)$ for the following functions:

$$
f(x, y)=4 x y^{3} \quad f(x, y)=\ln \left(x^{2}+x y^{2}\right)
$$

3. Find the total differential for the following functions:

$$
f(x, y)=x \cos \left(\frac{y}{x}\right) \quad f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

4. Find an equation of the tangent plane to the graph of $f(x, y)=x y^{2}-x y+3 x^{3} y$ at $P(1,3)$.
5. Suppose the plane $z=2 x-y-3$ is tangent to the graph of $z=f(x, y)$ at $P(2,4)$.

Find $f(2,4), f_{x}(2,4), f_{y}(2,4)$.
Approximate $f(2.2,3.9)$.
6. Compute the directional derivative at P in the direction \mathbf{v} for the following functions:

$$
\begin{array}{ccr}
f(x, y, z)=z x-x y^{2}, & P(3,-1), & \mathbf{v}=(2,-1,2) \\
f(x, y, z)=\sin (x y+z), & P(0,0,0), & \mathbf{v}=\mathbf{j}+\mathbf{k}
\end{array}
$$

7. Find an equation of the tangent plane at $P(0,3,-1)$ to the surface

$$
z e^{x}+e^{z+1}=x y+y-3 .
$$

8. Let $f(x, y)=x^{2} y+y^{2} z$. If $x=s+t, y=s t, z=2 s-t$, compute $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.
9. Find the critical points and analyze them using the Second Derivate Test for the following functions:

$$
f(x, y)=x^{2}+2 y^{2}-4 x y+6 x \quad f(x, y)=x^{3}+2 y^{3}-x y
$$

10. Use Lagrange multipliers to find the minimum and maximum value of $f(x, y)=3 x-2 y$ on the circle $x^{2}+y^{2}=4$.
11. Use Lagrange multipliers to find the minimum and maximum value of $f(x, y)=x^{2} y$ on the ellipse $4 x^{2}+9 y^{2}=36$.
12. Use Lagrange multipliers to find the dimensions of a cylindrical can of fixed volume $V=1$ with minimal surface area, including the top and bottom of the can.
13. Find the dimensions of the box of maximum volume that can be placed inside the ellipsoid

$$
(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1
$$

