Math 233 Fall 2016 Sample Exam 1

Problem 1. Consider three points P(2, -1, 0), Q(0, -2, 1) and R(3, 0, -1).

- (a) Find a parametric equation of the line through Q and R.
- (b) Find the equation of the plane passing through P, Q, and R.
- (c) Find the area of triangle $\triangle PQR$.

Problem 2. Find the equation of a plane containing the line $\ell(t) = (2 + 3t, -t, 4 + t)$ and passing through the point P(0, 2, -1).

Problem 3. The position of a particle is $\mathbf{r}(t) = e^t \mathbf{i} + \sqrt{2}t \mathbf{j} + e^{-t} \mathbf{k}$.

- (a) Show that the speed of the particle at time t is $e^t + e^{-t}$.
- (b) Find the unit tangent vector $\mathbf{T}(t)$.

(c) Find the total distance travelled by the particle for $1 \le t \le 3$.

Problem 4. A string in the shape of a helix has a height of 15 cm and makes three full rotations over a circle of radius 4 cm.

- (a) Find a parametrization $\mathbf{r}(t)$ for the string.
- (b) Compute the length of the string.

Problem 5. Show that if position $\vec{\mathbf{r}}(t)$ satisfies $||\vec{\mathbf{r}}(t)|| = c$, then velocity $\vec{\mathbf{v}}(t)$ is orthogonal to $\vec{\mathbf{r}}(t)$.

Problem 6. Find the equation of the tangent plane to the ellipsoid $2x^2 + 3y^2 + z^2 = 20$ at the point P(-2, 1, -3).

Problem 7. Let S be the surface $x^2 + 4y^2 - z^2 = 9$.

- (a) Sketch the three traces of S, and then sketch S.
- (b) Find the equation of the tangent plane to S at the point P(-3, 2, 4).

Problem 8.

- (a) Show that $\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^4+y^4}$ does not exist.
- (b) Let $h(x, y) = x \sin(x + 2y)$. Verify Clairaut's Theorem: $h_{xy} = h_{yx}$.

Problem 9.

- (a) Show that $\lim_{(x,y)\to(0,0)} \frac{|x|}{|x|+|y|}$ does not exist.
- (b) Let $h(x, z) = e^{xz x^2 z^3}$. Compute $h_z(2, 1)$.

Problem 10. For the function $F(x, y, z) = x^2 - 2y^2 + z^2 + yz$

- (a) In what direction does the function increase fastest at the point P = (2, 1, -1)?
- (b) What is the rate of fastest increase in part (a)?
- (c) What is the equation of the level surface of F through the point (2, 1, -1)?
- (d) Find the equation of the tangent plane to the level surface of part (c) through the point (2, 1, -1).