Math 233 Fall 2016 Sample Exam 1

Problem 1. Consider three points $P(2,-1,0), Q(0,-2,1)$ and $R(3,0,-1)$.
(a) Find a parametric equation of the line through Q and R.
(b) Find the equation of the plane passing through P, Q, and R.
(c) Find the area of triangle $\triangle P Q R$.

Problem 2. Find the equation of a plane containing the line $\ell(t)=(2+3 t,-t, 4+t)$ and passing through the point $P(0,2,-1)$.

Problem 3. The position of a particle is $\mathbf{r}(t)=e^{t} \mathbf{i}+\sqrt{2} t \mathbf{j}+e^{-t} \mathbf{k}$.
(a) Show that the speed of the particle at time t is $e^{t}+e^{-t}$.
(b) Find the unit tangent vector $\mathbf{T}(t)$.
(c) Find the total distance travelled by the particle for $1 \leq t \leq 3$.

Problem 4. A string in the shape of a helix has a height of 15 cm and makes three full rotations over a circle of radius 4 cm .
(a) Find a parametrization $\mathbf{r}(t)$ for the string.
(b) Compute the length of the string.

Problem 5. Show that if position $\overrightarrow{\mathbf{r}}(t)$ satisfies $\|\overrightarrow{\mathbf{r}}(t)\|=c$, then velocity $\overrightarrow{\mathbf{v}}(t)$ is orthogonal to $\overrightarrow{\mathbf{r}}(t)$.

Problem 6. Find the equation of the tangent plane to the ellipsoid $2 x^{2}+3 y^{2}+z^{2}=20$ at the point $P(-2,1,-3)$.

Problem 7. Let S be the surface $x^{2}+4 y^{2}-z^{2}=9$.
(a) Sketch the three traces of S, and then sketch S.
(b) Find the equation of the tangent plane to S at the point $P(-3,2,4)$.

Problem 8.

(a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{2 x^{4}+y^{4}}$ does not exist.
(b) Let $h(x, y)=x \sin (x+2 y)$. Verify Clairaut's Theorem: $h_{x y}=h_{y x}$.

Problem 9.
(a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{|x|}{|x|+|y|}$ does not exist.
(b) Let $h(x, z)=e^{x z-x^{2} z^{3}}$. Compute $h_{z}(2,1)$.

Problem 10. For the function $F(x, y, z)=x^{2}-2 y^{2}+z^{2}+y z$
(a) In what direction does the function increase fastest at the point $P=(2,1,-1)$?
(b) What is the rate of fastest increase in part (a)?
(c) What is the equation of the level surface of F through the point $(2,1,-1)$?
(d) Find the equation of the tangent plane to the level surface of part (c) through the point $(2,1,-1)$.

