Math 233 Fall 2021 Sample Exam 1

Problem 1. Let $\overrightarrow{\mathbf{u}}=(4,4,5)$ and $\overrightarrow{\mathbf{v}}=(2,-1,1)$.
(a) Find a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.
(b) Find $\left\|\operatorname{proj}_{\overrightarrow{\mathbf{v}}} \overrightarrow{\mathbf{u}}\right\|$.
(c) Express $\overrightarrow{\mathbf{u}}$ as the sum $\overrightarrow{\mathbf{m}}+\overrightarrow{\mathbf{n}}$, where $\overrightarrow{\mathbf{m}}=\overrightarrow{\mathbf{u}}_{\|}$is parallel to $\overrightarrow{\mathbf{v}}$, and $\overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{u}}_{\perp}$ is orthogonal to $\overrightarrow{\mathbf{v}}$.

Problem 2. Consider three points $P(2,-1,0), Q(0,-2,1)$ and $R(3,0,-1)$.
(a) Find a parametric equation of the line through Q and R.
(b) Find the equation of the plane passing through P, Q, and R.
(c) Find the area of triangle $\triangle P Q R$.

Problem 3.

(a) Find the angle between the planes $x-y=3$ and $-y+z=1$.
(Hint: The angle between the planes is the angle between their normal vectors.)
(b) Find the equation of the plane that passes through the point $(1,2,-1)$ and is perpendicular to the line $\ell(t)=(2+3 t,-t, 4+t)$.
(c) Find the equation of a plane containing the line $\ell(t)=(2+3 t,-t, 4+t)$ and passing through the point $P(0,2,-1)$.
(d) Find the line of intersection between the planes $z=2 x-4 y+2$ and $x-y-2 z=4$.

Problem 4. For each equation below, describe the corresponding surface S in \mathbb{R}^{3}, sketch its three traces and then sketch S.
(a) \qquad $x^{2}+4 y^{2}+4 z^{2}=16$
(b) \qquad $4 x^{2}+y^{2}+4 z^{2}=16$
(c) \qquad $z=9 x^{2}+4 y^{2}$
(d) \qquad $z=9 x^{2}-4 y^{2}$
(e) \qquad $9 x^{2}+4 y^{2}=2 z^{2}+72$
(f) \qquad $9 x^{2}+4 z^{2}=2 y^{2}-72$
(g) \qquad $9 x^{2}+4 y^{2}=2 z^{2}$
(h) \qquad $9 x^{2}-4 y^{2}=72$

Problem 5. Sketch the level sets of the function $f(x, y, z)=x^{2}-y^{2}-z^{2}$.
Problem 6. The position of a particle is $\mathbf{r}(t)=e^{t} \mathbf{i}+\sqrt{2} t \mathbf{j}+e^{-t} \mathbf{k}$.
(a) Show that the speed of the particle at time t is $e^{t}+e^{-t}$.
(b) Find the total distance travelled by the particle for $1 \leq t \leq 3$.

Problem 7. A string in the shape of a helix has a height of 15 cm and makes three full rotations over a circle of radius 4 cm .
(a) Find a parametrization $\mathbf{r}(t)$ for the string.
(b) Compute the length of the string.

Problem 8. Show that if position $\overrightarrow{\mathbf{r}}(t)$ satisfies $\|\overrightarrow{\mathbf{r}}(t)\|=c$, then velocity $\overrightarrow{\mathbf{v}}(t)$ is orthogonal to $\overrightarrow{\mathbf{r}}(t)$.

Problem 9.

(a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{2 x^{4}+y^{4}}$ does not exist.
(b) Let $h(x, y)=x \sin (x+2 y)$. Verify Clairaut's Theorem: $h_{x y}=h_{y x}$.

Problem 10.
(a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{|x|}{|x|+|y|}$ does not exist.
(b) Let $h(x, z)=e^{x z-x^{2} z^{3}}$. Compute $h_{z}(2,1)$.

