Math 233 Fall 2021 Sample Exam 1

Problem 1. Let $\vec{\mathbf{u}} = (4, 4, 5)$ and $\vec{\mathbf{v}} = (2, -1, 1)$.

- (a) Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- (b) Find $|| \operatorname{proj}_{\vec{\mathbf{v}}} \vec{\mathbf{u}} ||$.
- (c) Express $\vec{\mathbf{u}}$ as the sum $\vec{\mathbf{m}} + \vec{\mathbf{n}}$, where $\vec{\mathbf{m}} = \vec{\mathbf{u}}_{\parallel}$ is parallel to $\vec{\mathbf{v}}$, and $\vec{\mathbf{n}} = \vec{\mathbf{u}}_{\perp}$ is orthogonal to $\vec{\mathbf{v}}$.

Problem 2. Consider three points P(2, -1, 0), Q(0, -2, 1) and R(3, 0, -1).

- (a) Find a parametric equation of the line through Q and R.
- (b) Find the equation of the plane passing through P, Q, and R.
- (c) Find the area of triangle $\triangle PQR$.

Problem 3.

- (a) Find the angle between the planes x y = 3 and -y + z = 1. (Hint: The angle between the planes is the angle between their normal vectors.)
- (b) Find the equation of the plane that passes through the point (1, 2, -1) and is perpendicular to the line $\ell(t) = (2 + 3t, -t, 4 + t)$.
- (c) Find the equation of a plane containing the line $\ell(t) = (2 + 3t, -t, 4 + t)$ and passing through the point P(0, 2, -1).
- (d) Find the line of intersection between the planes z = 2x 4y + 2 and x y 2z = 4.

Problem 4. For each equation below, describe the corresponding surface S in \mathbb{R}^3 , sketch its three traces and then sketch S.

(a)	$x^2 + 4y^2 + 4z^2 = 16$
(b)	$4x^2 + y^2 + 4z^2 = 16$
(c)	$z = 9x^2 + 4y^2$
(d)	$z = 9x^2 - 4y^2$
(e)	$9x^2 + 4y^2 = 2z^2 + 72$
(f)	$9x^2 + 4z^2 = 2y^2 - 72$
(g)	$9x^2 + 4y^2 = 2z^2$
(h)	$9x^2 - 4y^2 = 72$

Problem 5. Sketch the level sets of the function $f(x, y, z) = x^2 - y^2 - z^2$.

Problem 6. The position of a particle is $\mathbf{r}(t) = e^t \mathbf{i} + \sqrt{2} t \mathbf{j} + e^{-t} \mathbf{k}$.

- (a) Show that the speed of the particle at time t is $e^t + e^{-t}$.
- (b) Find the total distance travelled by the particle for $1 \le t \le 3$.

Problem 7. A string in the shape of a helix has a height of 15 cm and makes three full rotations over a circle of radius 4 cm.

- (a) Find a parametrization $\mathbf{r}(t)$ for the string.
- (b) Compute the length of the string.

Problem 8. Show that if position $\vec{\mathbf{r}}(t)$ satisfies $||\vec{\mathbf{r}}(t)|| = c$, then velocity $\vec{\mathbf{v}}(t)$ is orthogonal to $\vec{\mathbf{r}}(t)$.

Problem 9.

- (a) Show that $\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^4+y^4}$ does not exist.
- (b) Let $h(x,y) = x \sin(x+2y)$. Verify Clairaut's Theorem: $h_{xy} = h_{yx}$.

Problem 10.

- (a) Show that $\lim_{(x,y)\to(0,0)} \frac{|x|}{|x|+|y|}$ does not exist.
- (b) Let $h(x,z) = e^{xz-x^2z^3}$. Compute $h_z(2,1)$.