Calculus III (Math 233) Exam 2

November 2, 2016
Justify answers and show all work for full credit.
NAME: \qquad
Problem 1. Evaluate $\iint_{D} x^{2} d A$ where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.

Problem 2. Let D be the region bounded by $y=x, y=0$ and $y=4 x-x^{2}$. (Note that D is below the line $y=x$.) Write $\iint_{D} f(x, y) d A$ as an iterated integral in two different ways: in the order $d x d y$ and $d y d x$.

Problem 3. Change the order of integration to evaluate $\int_{0}^{1} \int_{3 y}^{3} e^{\left(x^{2}\right)} d x d y$.
Problem 4. Using an integral, compute the volume of the tetrahedron bounded by the plane $3 x+2 y+z=6$ in the first octant.

Problem 5. Evaluate $\iiint_{E} x d V$ where E is the solid in the first octant ($x, y, z \geq 0$) which is bounded by the surface $y=1-x^{2}$ and the plane $z=1-x$.

Problem 6. Find all the critical points of $f(x, y)=3 x^{3}+y^{2}-9 x-6 y+1$, and classify them using the Second Derivative Test.

Problem 7. Suppose the temperature on the sphere $x^{2}+y^{2}+z^{2}=14$ is given by $T(x, y, z)=2 x+4 y+6 z$. Find the temperature at the coldest point on the sphere.

Problem 8.

(a) Find the max and min of $f(x, y)=3 x^{2}+4 y^{2}-6 x-5$ on the circle $x^{2}+y^{2}=16$.
(b) Find the max and min of $f(x, y)=3 x^{2}+4 y^{2}-6 x-5$ on the disc $x^{2}+y^{2} \leq 16$. (Use your answer in part (a).)

Problem 9. Change the order of integration to $d x d y d z: \int_{0}^{2} \int_{0}^{x^{3}} \int_{0}^{y} f(x, y, z) d z d y d x$

