Calculus III (Math 233) Exam 2

November 2, 2016

Professor Ilya Kofman

Justify answers and show all work for full credit.

NAME: _

Problem 1. Evaluate $\iint_D x^2 dA$ where *D* is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

Problem 2. Let *D* be the region bounded by y = x, y = 0 and $y = 4x - x^2$. (Note that *D* is below the line y = x.) Write $\iint_D f(x, y) dA$ as an iterated integral in two different ways: in the order dx dy and dy dx.

Problem 3. Change the order of integration to evaluate $\int_0^1 \int_{3y}^3 e^{(x^2)} dx dy$.

Problem 4. Using an integral, compute the volume of the tetrahedron bounded by the plane 3x + 2y + z = 6 in the first octant.

Problem 5. Evaluate $\iiint_E x \, dV$ where *E* is the solid in the first octant $(x, y, z \ge 0)$ which is bounded by the surface $y = 1 - x^2$ and the plane z = 1 - x.

Problem 6. Find all the critical points of $f(x, y) = 3x^3 + y^2 - 9x - 6y + 1$, and classify them using the Second Derivative Test.

Problem 7. Suppose the temperature on the sphere $x^2 + y^2 + z^2 = 14$ is given by T(x, y, z) = 2x + 4y + 6z. Find the temperature at the coldest point on the sphere.

Problem 8.

(a) Find the max and min of $f(x, y) = 3x^2 + 4y^2 - 6x - 5$ on the circle $x^2 + y^2 = 16$.

(b) Find the max and min of $f(x, y) = 3x^2 + 4y^2 - 6x - 5$ on the disc $x^2 + y^2 \le 16$. (Use your answer in part (a).)

Problem 9. Change the order of integration to $dx \, dy \, dz$: $\int_0^2 \int_0^{x^3} \int_0^y f(x, y, z) \, dz \, dy \, dx$