Calculus III (Math 233) Exam 1

Date: September 28, 2016
Justify answers and show all work for full credit.

NAME: \qquad
Problem 1. Consider three points $P(1,1,0), Q(-2,1,0)$ and $R(0,-1,2)$.
(a) Find a parametric equation of the line through P and R.
(b) Find the equation of the plane passing through P, Q, and R.
(c) Find the area of triangle $\triangle P Q R$.
(d) Find the intersection of the plane and the line $\ell(t)=(2+3 t,-t, 4+t)$.

Problem 2. The position of a particle is $\mathbf{r}(t)=(4 \cos 3 t, 5 t+1,4 \sin 3 t)$, for $0 \leq t \leq 2 \pi$.
(a) Find the speed of the particle $v(t)$.
(b) Find the unit tangent vector $\mathbf{T}(t)$.
(c) Find the arclength for $0 \leq t \leq 2 \pi$.
(d) Precisely describe the trajectory of the particle as a helix, including its height, base circle, number of revolutions, and direction.

Problem 3. Let S be the surface $x^{2}-3 y^{2}+z^{2}=13$.
(a) Sketch the three traces of S, and then sketch S.
(b) Find the equation of the tangent plane to S at the point $P(-4,2,3)$.

Problem 4. Assuming the earth is a round sphere, show that when you drive around in a car, your velocity vector is always tangent to the earth.

Problem 5.

(a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist.
(b) Compute all the first partial derivatives of $g(x, y, z)=\sqrt{5 x y+2 z}$.
(c) Let $h(x, y, z)=\frac{x^{2}+y^{2}}{z^{2}+1}$. Compute $h_{x z}, h_{x y}, h_{y z}$.

Problem 6.

(a) Find the equation of the tangent plane for $f(x, y)=\log \left(2 x^{2}-6 y^{2}\right)$ at the point $P(2,1)$.
(b) Find the equation of the tangent plane to the surface $x y-y z+z x=6$ at the point $Q(2,0,3)$.

Problem 7. Suppose the plane $z=3 x-4 y+7$ is tangent to the graph of $z=f(x, y)$ at the point $P(1,-2)$.
(a) Find the direction of maximum increase for the function $f(x, y)$ at P.
(b) Find $f(1,-2)$, and then approximate $f(1.02,-2.01)$.

Problem 8. The temperature at a point in the plane is $T(x, y)=100-4 x^{3}-3 y^{2}$. A bug is at the point $(-1,1)$.
(a) Compute $\nabla T(-1,1)$.
(b) Find the rate of change of temperature in the direction of $\vec{v}=(3,4)$.
(c) Find the direction in which the bug should move to increase its temperature the fastest.
(d) What is the maximum rate of increase of temperature?
(e) Find a direction in which the bug should move to NOT change its temperature.

