Sample problems for Final for Math 233

- The final exam will be comprehensive, covering all sections covered in class. Changes to the syllabus: added Sections $13.10,14.5,14.8$; and removed Sections 14.4, 15.1. The untested material will weigh more on the final exam.
- For problems on the material for Exams 1, 2, 3 please refer to the sample problems for those exams.

1. Evaluate the following double integrals.
(a) $\iint_{D} x y+2 x+3 y d A$ where D is the region in the first quadrant bounded by $x=$ $1-y^{2}, x=0, y=0$.
(b) $\iint_{D} x e^{y} d A$ where D is bounded by $x=1, y=0, y=x^{2}$.
(c) $\iint_{D} x y d A$ where D is bounded by $y=5-x^{2}, y=x^{2}-3$.
2. Evaluate the following double integrals using polar coordinates.
(a) $\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d A$ where D is bounded by $y=0, y=\sqrt{3} x, x^{2}+y^{2}=9$.
(b) $\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x^{2}+y^{2} d y d x$
3. Evaluate the following integral. (You must switch the order of integration.) $\int_{0}^{1} \int_{y / 2}^{1 / 2} e^{-x^{2}} d x d y$
4. Find the surface area of the paraboloid $z=16-x^{2}-y^{2}$ in the first octant.
5. Evaluate the following Triple integrals
(a) $\iiint_{E} x^{2} d V$ where $E=\{(x, y, z) \mid 0 \leq x \leq 2,0 \leq y \leq 2 x, 0 \leq z \leq x\}$.
(b) $\iiint_{T} y d V$ where T is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $2 x+y+z=2$.
6. Evaluate the following integrals using Cylindrical or Spherical Coordinates.
(a) $\iiint_{E} x^{2}+y^{2} d V$ where E is the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
(b) $\iiint_{H} z^{5} \sqrt{x^{2}+y^{2}+z^{2}} d V$ where H is the solid hemisphere with the center at the origin and radius 1 which lies above the $x y$-plane.
7. Set up the integrals for volumes of the given solids and indicate with coordinates you will use.
(a) The volume inside the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$. the planes $z=0, y=0, y=x, z=1$ in the first octant.
(b) The volume of a wedge of cheese bounded by the cylinder $x^{2}+y^{2}=1$, and the planes $z=0, z=1, y=0, y=x$.
(c) The volume of the chocolate ice cream bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.
(d) The volume of the region between the paraboloids $z=x^{2}+y^{2}-1$ and $z=1-x^{2}-y^{2}$.
(e) The volume of the tetrahedron bounded by the plane $2 x+2 y+z=4$ in the first octant.
(f) The volume bounded by the sphere of radius a.
8. Evaluate the integral by changing to an appropriate coordinate system.
(a) $\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x$
(b) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{1+\sqrt{1-x^{2}-y^{2}}}^{1-\sqrt{1-x^{2}-y^{2}}} 2 d z d y d x$
9. Use change of variables to evaluate the following integrals.
(a) $\iint_{R}(x+y) d A$ where R is the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
(b) $\iint_{R}(y-x)^{2} d A$ where R is the region bounded by lines $y=x, y=2 x, y=x+2$ and $y=2 x-1$. Hint: Use the transformation $T(u, v)=(u-v, 2 u-v)$.
