Solutions to Sample problems for Exam 1 for Math 233

Please report any mistake or typos to your instructor.

1. (a) $\langle 2,-6,4\rangle$ (b) $\langle 14,3,-17\rangle$ (c) $\sqrt{26}$ (d) $\sqrt{38}$ (e) $2 \sqrt{14}$ (f) -4
(g) $\langle-18,-18,-18\rangle(\mathrm{h})\langle-(8 / 13), 6 / 13,2 / 13\rangle$ (i) $\langle 4 / 19,6 / 19,-(10 / 19)\rangle$
2. $\cos \theta=9 / \sqrt{870}$, so $\theta \simeq 72^{\circ}$
3. $\overrightarrow{\mathbf{m}}=\langle-(20 / 9), 10 / 9,20 / 9\rangle$ and $\overrightarrow{\mathbf{n}}=\langle 38 / 9,26 / 9,25 / 9\rangle$.
4. Area $=9 \sqrt{2}$
5. Area $=3$
6. $n= \pm \frac{1}{\sqrt{86}}(7,-1,6)$
7. Parametric: $x=4-t, y=5-3 t, z=6-5 t$, symmetric: $x-4=\frac{y-5}{3}=\frac{z-6}{5}$
8. parametric: $\ell(t)=(1-13 t,-13 t, 1)$, symmetric: $x-y=1, z=1$
9. $2 x-y-z+3=0$
10. $3 x-5 y+z-1=0$
11. $3 x-y+z=0$
12. No. Use dot product, cross product, or equations to justify. For example, the cross product $(1,0,2) \times(0,1,1) \neq 0$.
13. No. Points are coplanar if and only if the scalar triple product of the 3 vectors obtained from the 4 points is zero. The scalar triple product is 2 (or -2) and hence points are no coplanar.
14. $2 x+4 y-z+11=0$
15. $1 / \sqrt{11}$
16. Hyperbolic paraboloid (saddle), which passes through the origin, rises along the x-axis, and falls along the y-axis.
17. Hyperboloid of two sheets with circular traces of intersection with planes $x=k$ (for $k \geq 2$).
18. $(r, \theta, z)=(2, \pi / 6,2 \sqrt{3})$ and $(\rho, \theta, \phi)=(4, \pi / 6, \pi / 6)$
19. The surface is a half cone with cone angle $\pi / 3$. In rectangular co-ordinate: $z=$ $\sqrt{3} \sqrt{x^{2}+y^{2}}$ In cylindrical co-ordinates: $z=\sqrt{3} r$
