Calculus III (Math 233) Exam 3

November 24, 2008
Professor Ilya Kofman
Justify answers and show all work for full credit.

NAME: \qquad

Problem 1. (14 pts) Find the equation of the tangent plane to the surface $x y+y z+z x=6$ at the point $(2,0,3)$.

Problem 2. (14 pts) The temperature at a point in the plane is $T(x, y)=100-3 x^{2}-2 y^{3}$. A bug is at the point $(1,-1)$.
(a) Compute $\nabla T(1,-1)$.
(b) Find the rate of change of temperature in the direction of $\vec{v}=\langle 3,-4\rangle$.
(c) Find a direction in which the bug should move to NOT change its temperature.

Problem 3. (8 pts) Suppose the plane $z=x-2 y-3$ is tangent to the graph of $z=f(x, y)$ at $P(1,-2)$.
(a) Find $f(1,-2), f_{x}(1,-2), f_{y}(1,-2)$.
(b) Find the direction of maximum increase for the function f at the point P.

Problem 4. (14 pts) A rectangular box has length, width and height, respectively, $20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$. Use differentials to estimate the maximum error in measuring the volume of the box if the error in measuring each dimension is $\pm 0.11 \mathrm{~cm}$.

Problem 5. (14 pts) Let $f(x, y, z)=x+y^{2} z$ and $x=3 s^{2}+2 t, \quad y=3 s-2 t^{2}$ and $z=s^{2}-t^{2}$. Compute $\frac{\partial f}{\partial s}(2,-2)$ and $\frac{\partial f}{\partial t}(2,-2)$.

Problem 6. (22 pts) Let $f(x, y)=2 x^{2}+y^{2}-4 y+3$.
(a) Find critical points of f on the region $x^{2}+y^{2}<9$.
(b) Find the exterme values on the boundary $x^{2}+y^{2}=9$ using Lagrange Multipliers.
(c) Find the exterme values of f on $x^{2}+y^{2} \leq 9$ using the above information.

Problem 7. (14 pts) Find all the critical points of $f(x, y)=x^{3}+y^{3}-3 x y+4$, and classify them using the Second Derivative Test.

