Calculus III (Math 233) Exam 3

November 24, 2008 Professor Ilya Kofman Justify answers and show all work for full credit.

NAME:

Problem 1. (14 pts) Find the equation of the tangent plane to the surface xy + yz + zx = 6 at the point (2, 0, 3).

Problem 2. (14 pts) The temperature at a point in the plane is $T(x, y) = 100 - 3x^2 - 2y^3$. A bug is at the point (1, -1).

- (a) Compute $\nabla T(1, -1)$.
- (b) Find the rate of change of temperature in the direction of $\vec{v} = \langle 3, -4 \rangle$.
- (c) Find a direction in which the bug should move to NOT change its temperature.

Problem 3. (8 pts) Suppose the plane z = x - 2y - 3 is tangent to the graph of z = f(x, y) at P(1, -2).

- (a) Find f(1, -2), $f_x(1, -2)$, $f_y(1, -2)$.
- (b) Find the direction of maximum increase for the function f at the point P.

Problem 4. (14 pts) A rectangular box has length, width and height, respectively, $20 cm \times 10 cm \times 10 cm$. Use differentials to estimate the maximum error in measuring the volume of the box if the error in measuring each dimension is $\pm 0.11 cm$.

Problem 5. (14 pts) Let $f(x, y, z) = x + y^2 z$ and $x = 3s^2 + 2t$, $y = 3s - 2t^2$ and $z = s^2 - t^2$. Compute $\frac{\partial f}{\partial s}(2, -2)$ and $\frac{\partial f}{\partial t}(2, -2)$.

Problem 6. (22 pts) Let $f(x, y) = 2x^2 + y^2 - 4y + 3$.

- (a) Find critical points of f on the region $x^2 + y^2 < 9$.
- (b) Find the exterme values on the boundary $x^2 + y^2 = 9$ using Lagrange Multipliers.
- (c) Find the exterme values of f on $x^2 + y^2 \leq 9$ using the above information.

Problem 7. (14 pts) Find all the critical points of $f(x, y) = x^3 + y^3 - 3xy + 4$, and classify them using the Second Derivative Test.