Calculus III (Math 233) Exam 2

Date: October 22, 2008
Justify answers and show all work for full credit.
NAME: \qquad

Problem 1. A particle starts at location $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ with initial velocity $3 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$. Its acceleration is $\mathbf{a}(t)=6 t \mathbf{i}+12 t^{2} \mathbf{j}-6 \mathbf{k}$. Find the location of the particle at $t=2$.

Problem 2. On a flat table 4 ft high, a ball rolls with a speed of $3 \mathrm{ft} / \mathrm{sec}$. If the ball rolls off, how far away from the table does it land?

Problem 3. The position of a particle is $\mathbf{r}(t)=e^{t} \mathbf{i}+\sqrt{2} t \mathbf{j}+e^{-t} \mathbf{k}$.
(a) Show that the speed of the particle at time t is $e^{t}+e^{-t}$.
(b) Find the unit tangent vector $\mathbf{T}(t)$.
(c) Find the tangential component of the acceleration.
(d) Find the normal component of the acceleration.
(e) Find the total distance travelled by the particle for $1 \leq t \leq 3$.

Problem 4. A string in the shape of a helix has a height of 15 cm and makes three full rotations over a circle of radius 4 cm .
(a) Find a parametrization $\mathbf{r}(t)$ for the string.
(b) Compute the length of the string.

Problem 5. Show that if $\|\mathbf{r}(t)\|=c$ then $\mathbf{r}(t) \perp \mathbf{r}^{\prime}(t)$.

Problem 6. Show that the curvature of a straight line in space at every point is 0 .

Problem 7. (Bonus)
Show that if $\mathbf{r}(s)$ is parametrized by arclength then $\mathbf{a}(s) \cdot \mathbf{v}(s)=0$.

