Calculus III (Math 233) Exam 1

Date: September 24, 2008
Professor Ilya Kofman
Justify answers and show all work for full credit.

NAME: \qquad

Problem 1. Let $\overrightarrow{\mathbf{u}}=\langle 4,4,5\rangle$ and $\overrightarrow{\mathbf{v}}=\langle 2,-1,1\rangle$.
(a) Find a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.
(b) Find $\left\|\operatorname{proj}_{\overrightarrow{\mathbf{v}}} \overrightarrow{\mathbf{u}}\right\|$.
(c) Express $\overrightarrow{\mathbf{u}}$ as the sum of $\overrightarrow{\mathbf{m}}=\overrightarrow{\mathbf{u}}_{\| \mid}$parallel to $\overrightarrow{\mathbf{v}}$, and $\overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{u}}_{\perp}$ orthogonal to $\overrightarrow{\mathbf{v}}$.

Problem 2. Consider three points $A(-2,1,-1), B(1,2,2), C(1,1,5)$.
(a) Are the points A, B, C collinear? Justify your answer using the cross-product.
(b) Find the area of the triangle formed by A, B, C.
(c) Find the equation of the plane that contains A, B, C.

Problem 3. Consider two points $E(1,0,1), F(-3,2,3)$.
(a) Find a parametric equation of the line through E and F.
(b) Find the symmetric equation of the line through E and F.
(c) Find the cylindrical coordinates for E.
(d) Find the spherical coordinates for E.

Problem 4.

(a) Find the angle between the planes $x-y=3$ and $-y+z=1$.
(Hint: Angle between the planes is the angle between their normal vectors.)
(b) Find the equation of the plane that passes through the point $(1,2,-1)$ and is perpendicular to the line $x-2=\frac{y+1}{2}=\frac{z}{4}$.

Problem 5. For each equation below, find the surface in \mathbf{R}^{3} that matches it.
(a)

$$
x^{2}+4 y^{2}+4 z^{2}=16
$$

(b) \qquad $4 x^{2}+y^{2}+4 z^{2}=16$
(c) \qquad $z=9 x^{2}+4 y^{2}$
(d) \qquad $z=9 x^{2}-4 y^{2}$
(e) \qquad $9 x^{2}+4 y^{2}=2 z^{2}+72$
(f) \qquad $9 x^{2}+4 z^{2}=2 y^{2}-72$
(g) \qquad $9 x^{2}+4 y^{2}=2 z^{2}$
(h) \qquad $9 x^{2}-4 y^{2}=72$

