Calculus III (Math 233) Exam 1

Date: September 24, 2008

Professor Ilya Kofman

Justify answers and show all work for full credit.

NAME:

Problem 1. Let $\vec{\mathbf{u}} = \langle 4, 4, 5 \rangle$ and $\vec{\mathbf{v}} = \langle 2, -1, 1 \rangle$.

- (a) Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- (b) Find $|| \operatorname{proj}_{\vec{v}} \vec{u} ||$.
- (c) Express $\vec{\mathbf{u}}$ as the sum of $\vec{\mathbf{m}} = \vec{\mathbf{u}}_{\parallel}$ parallel to $\vec{\mathbf{v}}$, and $\vec{\mathbf{n}} = \vec{\mathbf{u}}_{\perp}$ orthogonal to $\vec{\mathbf{v}}$.

Problem 2. Consider three points A(-2, 1, -1), B(1, 2, 2), C(1, 1, 5).

- (a) Are the points A, B, C collinear? Justify your answer using the cross-product.
- (b) Find the area of the triangle formed by A, B, C.
- (c) Find the equation of the plane that contains A, B, C.

Problem 3. Consider two points E(1, 0, 1), F(-3, 2, 3).

- (a) Find a parametric equation of the line through E and F.
- (b) Find the symmetric equation of the line through E and F.
- (c) Find the cylindrical coordinates for E.
- (d) Find the spherical coordinates for E.

Problem 4.

- (a) Find the angle between the planes x y = 3 and -y + z = 1. (Hint: Angle between the planes is the angle between their normal vectors.)
- (b) Find the equation of the plane that passes through the point (1, 2, -1) and is perpendicular to the line $x 2 = \frac{y+1}{2} = \frac{z}{4}$.

Problem 5. For each equation below, find the surface in \mathbf{R}^3 that matches it.

- (a) _____ $x^2 + 4y^2 + 4z^2 = 16$
- (b) _____ $4x^2 + y^2 + 4z^2 = 16$
- (c) _____ $z = 9x^2 + 4y^2$
- (d) _____ $z = 9x^2 4y^2$
- (e) _____ $9x^2 + 4y^2 = 2z^2 + 72$
- (f) _____ $9x^2 + 4z^2 = 2y^2 72$
- (g) _____ $9x^2 + 4y^2 = 2z^2$
- (h) _____ $9x^2 4y^2 = 72$