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This is the first of a two-part talk on closed maximality principles.



This is the first of a two-part talk on closed maximality principles.

| gave the second part last week at the First European Set Theory
meeting in Bedlewo, and | apologize to those who attended that talk for
some overlaps between the talks.



Let's view the universe
and Its possible generic extensions

as a Kripke model
for modal logic.
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Write &g to express that ¢ holds in a forcing extension (¢ is forceable).

Note: This is the first order statement 4P P IF .

e means that ¢ holds in every forcing extension (¢ is necessary).

This is again a first order statement.

So the statement < () makes sense.

It expresses that it is forceable that ¢ is necessary, or in short, that ¢
is forceably necessary.

The Maximality Principle MP is the scheme consisting of the formulae

(COp) = o,

for every sentence . It was introduced in a slightly different formulation
in 1977 here at the Logic Colloquium by Stavi and Vaananen, and then
rediscovered independently by Hamkins, as stated.
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Possible modifications of MP:

. Restrict to certain classes of forcings, such as: Proper, ccc, stationary-
preserving, ...

. Allow parameters in the scheme COp =— ¢, i.e., boldface versions of
the principles.

. Necessary forms of the boldface principles.

. (Restrict to a subclass of formulae.)

General form of the principle:

MPr(X),

where I' is a class of partial orders and X is the parameter set.



| looked at the case where I' is one of the following, for some fixed
regular cardinal k.



| looked at the case where I' is one of the following, for some fixed
regular cardinal k.

1. The class of all <k-closed forcings,



| looked at the case where I' is one of the following, for some fixed
regular cardinal k.

1. The class of all <k-closed forcings,

2. the class of all <k-directed-closed forcings,



| looked at the case where I' is one of the following, for some fixed
regular cardinal k.

1. The class of all <k-closed forcings,
2. the class of all <k-directed-closed forcings,

3. the class of all forcings of the form Col(k, A) or Col(k, < A),
for some A. Call the class Col(k).



| looked at the case where I' is one of the following, for some fixed
regular cardinal k.

1. The class of all <k-closed forcings,
2. the class of all <k-directed-closed forcings,

3. the class of all forcings of the form Col(k, A) or Col(k, < A),
for some A. Call the class Col(k).

Note: kK = w Is allowed!

The corresponding parameter set will usually be one of the following:

0, H.U {k}, H. +.
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Overview

. Relationships between versions of the maximality principles.

. Consistency Investigations:

Consistency strengths,
Compatibility with large cardinals.

. Implications.
. Separations.
. Combinations.

. Limitations.

The last two points were already covered in the second part of the talk.



Relationships between versions of the maximality
principles

Note the following folkloristic fact:

Lemma 1. Let k be a regular cardinal and N > k a cardinal with
A = A=F. Then there is a dense subset A of Col(k, \) such that if P is

a separative <r-closed partial order with P = X\ and 1 IFp (A = k), then
there is a dense subset D of P with Col(k,\) [ A= P | D, ie., Col(k,\)

and P are forcing-equivalent.
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principles

Note the following folkloristic fact:

Lemma 1. Let k be a regular cardinal and N > k a cardinal with
A = A=F. Then there is a dense subset A of Col(k, \) such that if P is

a separative <r-closed partial order with P = X\ and 1 IFp (A = k), then
there is a dense subset D of P with Col(k,\) [ A= P | D, ie., Col(k,\)

and P are forcing-equivalent.

Corollary 2. Let P be a <r-closed notion of forcing, where k is regular.
Then if A > P and \<" = ),

(P x Col(k,A)) I D= Col(k,A) | A,
for some dense set D and the dense set A from Lemma 1.

So Col(k) absorbs any <k-closed forcing.
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Lemma 3.

/FC + MPCOI(/%:) (X)
- ZFC + MP</<J—dir. cl.(X)
= ZFC + MP</<,—closed(X)-

Proof. Let ¢ be a statement with parameters from X. To show
MP o —air. c1.(X) = MP_closed(X),
it suffices to show:
@ Is <k-closed-forceably necessary

—

@ is <k-directed-closed-forceably necessary.
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This can be seen as follows:

o Let P be a <k-closed poset making ¢ <k-closed-necessary.

e [P forces that it is <k-closed-necessary that ¢ is <x-closed-necessary.
o Let Q = Col(k, ), where 0 is sufficiently closed and large.

o Note: Q = Col(k,8)V".

e ¢ is <r-closed-necessary in VEXQ,

o P x Q is forcing equivalent to Q.

e (Q is <k-directed-closed.

The other statement is proven analogously.



MPCOI(K;) (H,i U {li}) < MPCOI(KJ) (HHZ—'_)

MP</<,—dir. cl.(Hﬁz U {li})< MP<K“_dir' Cl'(HK’—i_)

-

MP<K,—Closed(Hﬁ: U {K})<< MP</<J—closed(H/<,‘|‘)




Consistency

Theorem 4. Assume k < 9, Vs <V and k, as well as o, are regular.
Then MPcgi()(H+) holds in V|G|, where G is V-generic for P =
Col(k, <9).
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Implications

Lemma b. Let P be a <k-closed notion of forcing, where k Is regular,
and let G be P-generic over V.

1.

2.

3.

(Jensen) If S is a {,.-sequence, then V[G] ‘S is a O r-sequence”.
(Silver for k = w1) Let T be a slim k-tree (k > w). Then [T] = [T]VI¢].

If S and T are normal k-trees s.t. Iso(S,T) has cardinality less than
2%, then Iso(S,T) = (Iso(S,T))VI&],
If ¢ is a X1-sentence and A C k, then

(h, <, A) E o <= (k<. 4) F )V

Note that this remains true even for Yj}-sentences, if Kk = w, by
Shoenfield absoluteness.

If T is a k-Souslin tree, then V|G] = "T is a k-Souslin tree.”
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Corollary 6. The following statements, if true, are <k-closed-necessary.

1. &k

2. S and 1" are non-isomorphic normal k-trees.
3. T is a rigid normal k-tree.

4. T is a k-Aronszajn tree.

5. T is a slim k-tree which is not Kurepa.

6. 1' is a k-Souslin tree.

7. (k,<,A) = @, where p is a X} sentence and A is a subset of k", for
somen < w. If k = w, then ¥} can be replaced by %..
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Theorem 7. Assume MP o _closed(S U{K}). Then

1. If Kk > w, then $,. holds.

2. If k is the successor of the regular cardinal k and k<" = &k, then there
is a k-Souslin tree. In particular, this is true for kK = w;.

3. For any A C H,, with A € S, any X}-sentence ¢ and any <k-closed
notion of forcing IP, it follows that

(H., €, A) = <= 1lFp ((Hz, €, 4) = ).

So <k-closed-generic 35-absoluteness over H,. holds.

In case k = w, generic Yi-absoluteness in parameters from S N P(w)
follows.

So if S = H,.+, boldface <k-closed-generic ¥.1( H,,)-absoluteness follows
in case k > w, and boldface generic ¥.1-absoluteness in case k = w.
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From now on, assume that S = H,_+.

4. If k > w, then there is no slim x-Kurepa tree.
5. kT is inaccessible in L.

6. L.+ < L. So L isa model of T ,.+.

Proof. Generic X3-Absoluteness:

o 2<"’:/<;:?,€, by ...

o If Y(A) ="(H,€,A) =" holds in V, then this is necessary.

o If ©)(A) holds in V|G], then this is necessary. So 1 (A) is forceably
necessary, and hence true in V.
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e Col(k,|T]), yields an extension in which T ceases to be Kurepa.
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No slim Kurepa tree: Assume 1" were Kurepa.

e Col(k,|T]), yields an extension in which T ceases to be Kurepa.
e No branches can subsequently be added to T'.

e So T is forceably necessarily not Kurepa.

L.+ < L: Tarski-Vaught criterion.
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Equiconsistencies

Lemma 8. Let M be a model of ZFC+ MP . _(10sed({K}). Let & be the
supremum of the ordinals that are definable over L™ in the parameter k.
Then Ls < L.

Proof.

o ) < (Ii+)M, by MP</<;—closed({"{})'

e then verify the Tarski-Vaught criterion.
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Summarizing, we have shown:

Corollary 9. The following equiconsistencies hold:

1. The theory ZFC 4+ MP .. _closed({K}) is transitive model equiconsistent

to
/FC+ kisregular + Kk <0+ Vs <V,

locally in k.

2. The theory ZFC + MP_._coscd(H,+) + 6 = K™ is transitive model
equiconsistent to the theory

/FC + K is regular + k < 0 4 0 is inaccessible + Vs <V,

locally in k and o.
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Compatibility of the closed maximality principles at «
with x being a large cardinal

Lemma 10. Let ¢(k) express one of the following statements about k:
Kk IS Inaccessible, Mahlo, subtle, Woodin.

1. The theory ZFC 4+ MP_._closed({k}) + ©(k) is transitive model
equiconsistent to “ZFC + k is regular + K < § + Vs <V +p(k)”,

locally in k.

2. The theory ZFC + MP .. _ciosed(H,+) + 0 = kT + @(k) Is transitive
model equiconsistent to the theory “ZFC + k and o are regular +r <

0+ Vs < V", locally in k and 9.
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A weak version of the following Lemma was independently proven by
Leibman.

Lemma 11. Suppose k is supercompact and k < 0, where 0 is an
inaccessible cardinal such that Vs < V. Then there is a forcing

extension V|G| of V in which MPgg ) (H,+) holds and in which x
Is still supercompact.

Proof.

e Force to make x Laver indestructible,

e then force MPCOI(K,)(H/{,-'_)'
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A related Question

What is the consistency strength of a weakly compact x such that
MP</<J—Closed(Hﬁ; U {KL})/MP<KJ—CIOSGC1(H/{,+) holds?

The following is worthwhile to note in this context:

Observation 12. Assume MP_._(osed({Kk}) + K is weakly compact.
Then the weak compactness of k is indestructible under <k-closed forcing.

Proof. That k is weakly compact is expressed by a II3-formula over H,,. O
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A Digression: The strength of an indestructibly weakly
compact cardinal

Apter and Hamkins: If k is weakly compact, and its weak compactness
Is indestructible by < k-directed-closed forcing, and this indestructibility
was achieved by forcing that has a closure point below k, then x was
supercompact in the ground model.

Schimmerling and Steel: If K exists and x is weakly compact, then

is weakly compact in K and x+" = s+

Fuchs and Schindler: Obtain a non-domestic mouse.
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Impossible strengthenings of MP_,_oca(H, U {k})

Note: MP__closea({x}) cannot be consistently strengthened by
allowing for parameters which are not in H, +.

Let OMP_. closed(H,.+) be the principle stating that
MP - _closed (H.+) holds in every forcing extension obtained by <x-closed
forcing (with H, + interpreted in the extension).

Theorem 13. [Fuchs/Hamkins] OMP_._ciosca(H,+) is inconsistent
with ZFC, if kK > w.

Proof. Assume ZFC+DOMP . _closed(H,.+). Force to add a slim x-Kurepa
tree. Contradiction. O
Compare this with the following:

Theorem 14. [Woodin] OMP(R) is consistent, assuming strong axioms
of infinity.

Theorem 15. [Hamkins/Woodin] OMP...(R) is equiconsistent with
the existence of a weakly compact cardinal.
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Note that it is not the case that the stronger a principle is, the stronger
its necessary form is! Indeed, the following questions arise:

Question 16. /s OMP ¢y, (H+) consistent?

Is OMP - _qir. o1.(H+) consistent?
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Separating the principles

Recall the relationships between the principles:

MPCOI(KL) (HH: U {/{}) < MPCOI("‘?) (H/‘GJF)
MP</<;—dir. Cl.(Hl‘ﬂ U {’%})(( MP<"€_dir- Cl'(H"?+)
MP</<;—closed(H/£ U {’{}) < MP</4;—closed(Hﬁ;+)

Can any of these implications be reversed?
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Producing other models of closed maximality principles

Observation 17. MP_._(iosca(HU{K}), if true, is <k-closed-necessary.
Actually, MP ... _c10sed({a}) persists to <k-closed extensions, for any a.

The analogous statements apply to the maximality principles for <rk-
directed-closed forcings and forcings from Col(k) as well.

For the boldface versions of the maximality principles for <k-closed or
<k-directed-closed forcing, there is the following Lemma:

Lemma 18. Assume MP_._cosca(H,.+). Let P be a <kT-closed notion
of forcing. If G is P-generic, then in V|G|, MP «_closed(H,+) continues
to hold. This remains true if “<k-closed” is replaced with “<k-directed-
closed”.

Note: Why is a version of the previous lemma for Col(x) and Col(k™)
missing? Because there is none.
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Lemma 19. Assuming k is supercompact, kK < d and Vs <V, there is a
model in which MP ., _c1osed(HU{K}) holds, but MP ., _qiy. c1.(HcU{K})
does not.

If moreover O is inaccessible, then there is a model in which
MP . _closed (H c+) holds, but MP . _qir. o1.(H,, U {k}) does not.
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Proof. Focus on the boldface part.

e Do the Laver preparation.

e Force MP__qir. c1.(H,+). Call the resulting model M.

e Force over M to add a x'-regressive x™-Kurepa tree.

The forcing is <x'-closed and destroys x's supercompactness (Konig-
Yoshinobu). Call the model N.

e N is a model of MP . _ciosed (H+).

e NN is not a model of MP . _4ir. c1.({K}).
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Separating MP g, . from MP¢ ;)

Lemma 20.

1. MPcoi(x)(0) implies that V # HOD.

2. MP o _closed(D) implies that there is a forcing extension of an initial

segment of L in which MP . _qir. o1.(Hs U {k}) + V = HOD holds.
Analogously, MP . _c1osed(H .+ ) implies that there is a forcing extension

of L in which MP . _4ir. c1.(H,.+) + V = HOD holds.
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Proof. Part 1:"V # HOD" is Col(k)-forceably necessary.

Part 2: Focus on the boldface claim. Let 6 = (k™).
o Ls < L.

e Let G be Col(k,< d)-generic over L. So L|G] is a model of
MPCO](K,)(HK,_'_)'

e Force to code (G into the continuum function well above §.

e The result is a model of V.= HOD, where MP _; _c10sed(H ,.+) still holds,
because the forcing was <x*-closed.
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Boldface vs. lightface Principles

Lemma 21.

1. Assuming MP .. _c1osed(H U {K}), there is a forcing extension in which
MP<K‘,—CIOSGd(HK, U {/ﬂ)}) holds but MP</<,—closed(H;<,+) fails.

2. Assuming MP o _qir. o1.(H U {k}), there is forcing extension in which
MP</<:—dir. Cl.(HK, U {li}) holds but MP</<;—closed(H/<¢+) fails.

3. Assuming MP ¢ ) (H . U{K}), there is a model of MP g,y (HU{K})
in which MP o _closed(H.+) is false.



So in general,
none of the implications

shown in the figure
can be reversed.



