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Abstract. It is shown that the Magidor forcing to collapse the cofinality of

a measurable cardinal that carries a length ω1 sequence of normal ultrafilters,

increasing in the Mitchell order, to ω1, is subcomplete.

1. Introduction

The paper [3] was dedicated to the question how “nice” a forcing can be if it
changes the cofinality of a regular cardinal κ to an uncountable cardinal without
collapsing κ as a cardinal. It was shown that such a forcing cannot be proper,
and in particular, not countably closed, and that such a forcing necessarily does
some “damage” to the universe, so the conclusion was that it can’t be very nice.
But in the present paper, I show that such a forcing can be nice in a different
way: it can be subcomplete.1 Namely, the Magidor forcing to change the cofinality
of a measurable cardinal which carries a length ω1 sequence of normal measures,
increasing in the Mitchell order, to ω1, is subcomplete.

The salient features of subcomplete forcings, introduced by Jensen in [4], are
that they don’t add reals, yet may add countable sequences, preserve stationary
subsets of ω1, and can be iterated with revised countable support. The class of
subcomplete forcings includes Namba forcing (assuming (CH)), Př́ıkrý forcing, and
the forcing to shoot a club of order type ω1 through a stationary subset of a regular
cardinal greater than ω1, consisting of ordinals of countable cofinality. The catalog
of known subcomplete forcings is not very long, and proofs of subcompleteness are
often not obvious. So another motivation for the work in this paper is the wish
to extend this catalog by an interesting example, and to publicize the theory of
subcomplete forcing and the methods for proving subcompleteness.

2. Preliminaries

We follow Jensen’s exposition [5] of subcomplete forcing.

Definition 2.1. A transitive set N (usually a model of ZFC−) is full if there is an
ordinal γ such that Lγ(N) |= ZFC− and N is regular in Lγ(N), meaning that if
x ∈ N , f ∈ Lγ(N) and f : x −→ N , then ran(f) ∈ N .

Definition 2.2. For a poset P, δ(P) is the minimal cardinality of a dense subset
of P.
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Definition 2.3. Let N = LAτ = 〈Lτ [A],∈, A ∩ Lτ [A]〉 be a ZFC− model, δ an
ordinal and X∪{δ} ⊆ N . Then CNδ (X) is the smallest Y ≺ N such that X∪δ ⊆ Y .

Definition 2.4. A forcing P is subcomplete if for sufficiently large cardinals θ with
P ∈ Hθ, any ZFC− model N = LAτ with θ < τ and Hθ ⊆ N , any σ : N̄ −→Σω N
such that N̄ is countable, transitive and full and such that P, θ ∈ ran(σ), any
Ḡ ⊆ P̄ which is P̄-generic over N̄ , and any s ∈ ran(σ), the following holds. Letting
σ(s̄, θ̄, P̄) = s, θ,P, there is a condition p ∈ P such that whenever G ⊆ P is P-generic
over V with p ∈ G, there is in V[G] a σ′ such that

1. σ′ : N̄ −→Σω N ,
2. σ′(s̄, θ̄, P̄) = s, θ,P,
3. (σ′)“Ḡ ⊆ G,
4. CNδ(P)(ran(σ′)) = CNδ(P)(ran(σ)).

In order to prove that a forcing is subcomplete, we adopt Jensen’s approach to
liftups, as presented in [5].

Definition 2.5. Let σ : Ā −→Σ0
A, where Ā and A are models of the language of

set theory. Then σ is a cofinal embedding from Ā to A if for every x ∈ A there is an
x̄ ∈ Ā such that x ∈A σ(x̄). We write “σ : Ā −→Σ0

A cofinally” to express that
σ is a cofinal embedding. If Ā is a ZFC−-model and τ̄ ∈ Ā is a Ā-cardinal, then σ
is a τ̄ -cofinal from Ā to A if for every x ∈ A, there is a x̄ ∈ Ā such that in Ā, the
cardinality of x̄ is less than τ̄ and x ∈A σ(x̄). We write “σ : Ā −→Σ0

A τ̄ -cofinally”
to express that σ is a τ̄ -cofinal embedding.

Observation 2.6. Let σ : N̄ −→Σ0
N τ̄ -cofinally, where τ̄ ∈ N̄ is an uncountable

cardinal in N̄ and N̄ |= ZFC−. Let κ̄ ≥ τ̄ such that in N̄ , the cofinality of κ̄ is
either equal to ω or greater than or equal to τ̄ . Then σ is continuous at κ̄, i.e.,

σ(κ̄) = supσ“κ̄

Proof. Set κ = σ(κ̄). Note that supσ“κ̄ ≤ κ, so we only have to prove that
κ ≤ supσ“κ̄.

If the cofinality of κ̄ in N̄ is ω, then, letting f : ω −→ κ̄ be cofinal, with f ∈ N̄ ,
it is easy to see that the set {σ(f(n)) | n < ω} is cofinal in κ.

Now suppose that the cofinality of κ̄ in N̄ is at least τ̄ , and let α < κ be arbitrary.
By τ̄ -cofinality, there is a set a ∈ N̄ such that in N̄ the cardinality of a is less than
τ̄ , and such that α ∈ σ(a). By replacing a with a ∩ κ̄, we may assume that a ⊆ κ̄.
Since the cofinality of κ̄ in N̄ is at least τ̄ , it follows that a is bounded in κ̄, say by
γ < κ̄. But then, α ∈ σ(a) ⊆ σ(γ) < supσ“κ̄. �

The following fact about cofinal embeddings is well-known.

Fact 2.7. If σ : N̄ −→Σ0
N cofinally, where N̄ |= ZFC− and N̄ , N are transitive,

then σ is fully elementary, and hence, N |= ZFC−.

Definition 2.8. A model A of the language of set theory is solid if its well-founded
part is transitive.

Definition 2.9. Let Ā be a solid model of ZFC−, and let τ̄ be an uncountable
cardinal in the well-founded part of Ā. Let H̄ = (Hτ̄ )Ā, and let π̄ : H̄ −→Σ0

H
cofinally, where H is transitive. Then we write π : Ā −→π̄ A, or say that 〈A, π〉 is
a liftup of Ā, π̄, to express that π̄ ⊆ π, H is contained in the well-founded part of
A, A is solid, and π is Σ0-preserving and τ̄ -cofinal.
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A liftup always exists ([5, p. 118, Lemma 3.3]), and it is unique, up to isomor-
phism ([5, p. 117, Lemma 3.1]). In particular, if there is a transitive liftup, then
that is the unique transitive liftup. Transitive liftups exist in the scenario described
in the following interpolation lemma.

Lemma 2.10 ([5, Lemma 5.1]). Let N̄ and N be transitive models of ZFC−, and let

σ : N̄ −→Σω N . Let τ̄ be a cardinal in N̄ . Let H̄ = HN̄
τ̄ and H̃ =

⋃
{σ(u) | u ∈ H̄}.2

Then

1. The transitive liftup σ̃ : N̄ −→σ�H̄ Ñ exists.

2. There is a canonical elementary embedding k : Ñ −→ N such that k ◦ σ̃ = σ
and k�H̃ = id.

3. k is the unique k̃ : Ñ −→Σ0
N with k̃◦σ̃ = σ and k̃�τ̃ = id, where τ̃ = On∩H̃.

Corollary 2.11. In the notation of the previous lemma, if σ is a cofinal embedding,
then so is the canonical embedding k.

We will also use some Barwise theory, as presented in [5, p. 102 ff]. For a more
detailed treatment, see [1]. Recall that a structure 〈M,A1, . . . , An〉 is admissible
if it is transitive and satisfies KP, using the predicates A1, . . . , An. For admissible
M , Barwise developed an infinitary logic where the infinitary formulas are (coded
by) elements of M . Thus, infinitary conjunctions and disjunctions are allowed, as
long as they are in M . Let A be a Σ1(M) set of such infinitary formulas. The logic
comes with a proof theory and a model theory. The main features are:

1. The M -finiteness lemma: if a formula ϕ is provable from A, then there is a
u ∈M such that u ⊆ A and ϕ is provable from u.

2. The correctness theorem: if there is a model A with A |= A, then A is
consistent.

3. The Barwise completeness theorem: if M is countable and A is consistent,
then there is a model A with A |= A.

Definition 2.12. Let M be admissible. If A consists of infinitary formulas in M ,
then A is a theory on M . A is an ∈-theory on M if the language it is formulated
in contains the symbol ∈, a constant symbol x, for every x ∈M , and if the theory
contains the extensionality axiom, as well as the basic axiom

∀y (y ∈ x ⇐⇒
∨
z∈x

y = z)

for every x ∈M . It is a ZFC−-theory on M if it is an ∈-theory on M that contains
the ZFC− axioms (viewed as a set of finitary formulas, which are also in M).

If A is an ∈-theory on M and A is a solid model for A, then automatically,
xA = x, which is why I won’t specify the interpretation of these constants by such
a model.

Definition 2.13. A transitive model N of ZFC− is almost full if there is a solid
model A of ZFC−, such that N is contained in the well-founded part of A and N is
regular in A, i.e., if x ∈ N , f ∈ A, and f : x −→ N , then ran(f) ∈ N .

Definition 2.14. If N is a transitive set, then we write α(N) for the least α > ω
such that Lα(N) |= KP.

2There’s a typo here in the original lemma.
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We will use the following lemma several times in the main proof.

Lemma 2.15 ([5, p. 123, Lemma 4.5]). Let N̄ and N be a transitive ZFC−-models.
Let N̄ be almost full and σ : N̄ −→Σ0 N be cofinal. Then N is almost full. Further,
let L̄ be a theory in an infinitary language on Lα(N̄)(N̄) that has a Σ1-definition in

Lα(N̄)(N̄) in the parameters N̄ and p1, . . . , pn ∈ N̄ . Let L be the infinitary theory

on Lα(N)(N) defined over Lα(N)(N) by the same Σ1-formula, using the parameters

N , σ(p1), . . . , σ(pn). If L̄ is consistent, then so is L.

3. The proof

Let us fix the following for the remainder of the paper. κ is a measurable cardinal

which carries a sequence ~U = 〈Ui | i < ω1〉 of normal measures on κ, increasing

in the Mitchell-order. For i < j < ω1, f ji is a function with domain κ such

that Ui = [f ji ]Uj . I write ~f for this sequence of functions, ~f = 〈f ji | i < j < ω1〉.
M = M(~U, ~f) is then the forcing introduced by Magidor in [6]. If α < ω1, then I

use the notation M�α for the Magidor forcing M(~U�α, 〈f ji | i < j < α〉).
The generic filter added by M corresponds to a normal function c : ω1 −→ κ

called a Magidor sequence. That is, the generic filter is definable from the sequence
c, and vice versa. So instead of working with M-generic filters, I will work with the
sequences they correspond to.

The following sets play a crucial role in the very definition of M. For 0 < γ < ω1,
let

Aγ = {δ < κ | ∀µ < ν < γ fγµ (δ) C fγν (δ) are normal ultrafilters on δ}
Bγ = {δ ∈ Aγ | ∀µ < ν < γ [fνµ�δ]fγν (δ) = fγµ (δ)}

Then Aγ , Bγ ∈ Uγ , and letting

B0 = {δ < κ | δ is inaccessible}

it follows that B0 ∈ U0 also. These facts were shown by Magidor in [6].
I will need the following characterization of Magidor genericity.

Theorem 3.1 ([2, Theorem 4.4]). Let V be an inner model of W , and let M =

M(〈Ũγ |γ < α〉, 〈f̃νµ | µ < ν < α〉) be a Magidor forcing in V. Then c in W is M-

generic over V iff c is a strictly increasing sequence in
∏
γ<α B̃γ (where these sets

are defined as above, with respect to the sequences ~̃U and
~̃
f), such that

1. For every function X ∈ V∩
∏
γ<α Ũγ , there is a ζ < α such that for all ξ < α

with ξ > ζ, c(ξ) ∈ X(ξ).

2. For every limit β < α, and for every function X ∈ V ∩
∏
γ<β f̃

β
γ (c(β)), there

is a ζ < β such that for all ξ < β with ξ > ζ, c(ξ) ∈ X(ξ).

Now all the machinery needed for the proof of the main theorem is assembled.

Theorem 3.2. M is subcomplete.

Proof. Let θ > 22κ be a regular cardinal, τ > θ regular, N = Lτ [A] a ZFC−

model with Hθ ⊆ N , and let σ : N̄ −→Σω N be an elementary embedding with
θ,M ∈ ran(σ) and N̄ countable, transitive and full. Let’s fix s ∈ ran(σ), and
let δ = δ(M), the smallest cardinality of a dense subset of M. Let s̄ = σ−1(s),
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M̄ = σ−1(M), θ̄ = σ−1(θ) and δ̄ = σ−1(δ). Let Ω = ωN̄1 , and let c̄ : Ω −→ κ̄ be a
Magidor sequence (for M̄) over N̄ . Note that Ω is the critical point of σ.

To prove that M is subcomplete, we have to show that there is a condition in M
such that whenever G is M-generic and G contains that condition, then, letting d be
the Magidor sequence corresponding toG, in V[d], there is an elementary embedding
σ′ : N̄ −→ N such that σ′(s̄) = s, σ′“c̄ ⊆ d and CNδ (ran(σ)) = CNδ (ran(σ′)).

It is easy to see that δ ≥ κ+. The point is that if U is any normal ultrafilter on

κ and ~A = 〈Ai | i < κ〉 is a sequence of members of U , then there is an A ∈ U such
that no Ai is contained in A. Because otherwise, U would be the set of subsets A
of κ such that there is an i < κ with Ai ⊆ A. But if M is the ultrapower of V by

U , then ~A ∈M , and so, it would follow that U ∈M , being definable from ~A. This
contradicts the well-foundedness of the Mitchell order. Now if D = {〈si, Ai〉 | i <
κ} ⊆ M were dense in M, then we could, by this fact, for every j < ω1 choose
a Bj ∈ Uj such that for every i < κ, if Ai is defined at j and Ai(j) ∈ Uj , then

Ai(j) is not contained in Bj . Then 〈∅, ~B〉 is a condition in M that does not have
a strengthening in D, because for every i < κ, we can take j large enough that
dom(si) ⊆ j, in which case Ai(j) ∈ Uj , and hence, by definition, Ai(j) is not

contained in Bj , so that it is not the case that 〈si, Ai〉 ≤ 〈∅, ~B〉. The reader is
referred to [6] for the definition of the ordering on M.

Let k0 : N0 −→ N be the inverse of the Mostowski collapse of CNδ (ran(σ)). Let

σ0 = k−1
0 ◦ σ. So σ0 : N̄ −→ N0. Let sN0 = k−1

0 (s), MN0 = k−1
0 (M), θN0 = k−1

0 (θ)
and δN0 = k−1

0 (δ) (which is δ). As pointed out in [5, p. 129], it follows that

σ0 : N̄ −→σ�H̄ N0, where H̄ = (Hδ̄+)N̄ . In particular, the cofinality of On ∩N0 is
ω, since σ0 is a cofinal embedding.

Let L0 be the ZFC−-theory on Lα(N0)(N0) in the language with extra constants

σ̇ and ċ, consisting of the following additional axioms:3

1. σ̇ : N̄ −→ N0 is a c̄(ω)-cofinal, elementary embedding.

2. σ̇(s̄, M̄, θ̄, δ̄) = sN0 ,MN0 , θN0 , δN0 .
3. σ̇“c̄ = ċ.
4. ċ is generic over N0 for MN0�Ω.

The basic axioms are intended to insure that in any solid model of L0, x will be
interpreted as x, for every x ∈ Lα(N0)(N0). So when dealing with a solid model of
a theory containing these basic axioms, I omit the specification of how that model
interprets the constants of the form x.

(1) L0 is consistent.

Proof of (1). Let σ1 : N̄ −→ N1 be the liftup of N̄ by σ�(Hc̄(ω))
N̄ , which is well-

founded and hence can be taken to be transitive, by Lemma 2.10, and let c1 = σ1“c̄.
Moreover, let sN1 = σ1(s̄), MN1 = σ1(M̄), θN1 = σ1(θ̄) and δN1 = σ1(δ̄).

By design, 〈Hθ, σ1, c1〉 is a model of the ZFC−-theory L1 on Lα(N1)(N1) in the
language with extra constants σ̇, ċ and the following additional axioms:

1. σ̇ : N̄ −→ N1 is a c̄(ω)-cofinal, elementary embedding.

2. σ̇(s̄, M̄, θ̄, δ̄) = sN1 ,MN1 , θN1 , δN1 .

3Being a ZFC−-theory on Lα(N0)(N0), the language of L0 contains the constants x (x ∈
Lα(N0)(N0)), the basic axioms and the ZFC− axioms, see Definition 2.12. That’s why here, and
in similar situations to come, only the extra constants and additional axioms of the theory are
explicitly listed.



6 GUNTER FUCHS

3. σ̇“c̄ = ċ.
4. ċ is generic over N1 for MN1�Ω.

The first three points are obviously satisfied in 〈Hθ, σ1, c1〉 (of course, x is interpre-
ted as x). For the last point, we have to show that c1 is σ1(M)�Ω-generic over N1.
To this end, we verify the characterization of Magidor genericity given in Theorem
3.1.

Let’s write ~̄U = σ−1(~U), ~̄f = σ−1(~f), and ~UN1 = σ1( ~̄U), ~fN1 = σ1( ~̄f). Note that

since c̄(γ) ∈ (Bγ)N̄ , where (Bγ)N̄ is defined like Bγ with respect to the sequences
~̄U and ~̄f in N̄ , it’s clear that σ1(c̄(γ)) = c1(γ) ∈ (Bγ)N1 in the obvious sense.

So the first point to verify is that given a sequence ~X = 〈Xi | i < Ω〉 ∈ N1 ∩∏
i<Ω U

N1
i , there is a ζ < Ω such that for all ξ ∈ (ζ,Ω), c1(ξ) ∈ Xξ. Of course,

we want to use the fact that c̄ satisfies the corresponding condition over N̄ . Since
σ1 is c̄(ω)-cofinal, there is a set w ∈ N̄ of N̄ -cardinality less than c̄(ω) such that
~X ∈ σ1(w). We may assume that w consists of members of

∏
i<Ω Ūi, and then, we

may define 〈Yi | i < Ω〉 ∈
∏
i<Ω Ūi in N̄ by setting

Yi =
⋂
{zi | z = 〈zj | j < Ω〉 ∈ w}

(we used that Ui is κ̄-closed in N̄ and that the N̄ -cardinality of w is less than κ̄).
By genericity, there is a ζ < Ω such that for all ξ ∈ (ζ,Ω), c̄(ξ) ∈ Yξ. But this
means that, fixing ξ temporarily, it’s true in N̄ that for every z ∈ w, c̄(ξ) ∈ zξ. By
elementarity of σ1, it follows that for every z ∈ σ1(w), c1(ξ) ∈ zξ. In particular,
c1(ξ) ∈ Xξ, and this holds for all ξ ∈ (ζ,Ω).

The second point that needs to be verified in order to see that c1 is MN1�Ω-

generic over N1 is that for any limit ordinal β < Ω and every ~X = 〈Xi | i < β〉 ∈∏
i<β(fβi )N1(c1(β)), there is a ζ < β such that for all ξ ∈ (ζ, β), c1(ξ) ∈ Xξ.

As before, let w ∈ N̄ have N̄ -cardinality less than c̄(ω), consisting of members of∏
i<β f̄

β
i (c̄(β)), such that ~X ∈ σ1(w). Define Yi =

⋂
{zi | z = 〈zj | j < β〉 ∈ w},

for i < β. Since f̄βi (c̄(β)) is c̄(β)-closed in N̄ , and since in N̄ , w < c̄(ω) ≤ c̄(β), it

follows that Yi ∈ f̄βi (c̄(β)). By genericity, let ζ < β be such that for all ξ ∈ (ζ, β),
c̄(ξ) ∈ Yξ. So for every z ∈ w and ξ ∈ (ζ, β), c̄(ξ) ∈ zξ. Applying σ1, this means

that for every z ∈ σ1(w) (and in particular, for ~X), c1(ξ) ∈ zξ.
So since L1 has a model, it is consistent. And since σ0 is the liftup of N̄ by

σ�(Hδ̄+)N̄ , σ1 is also the liftup of N̄ by σ0�(Hc̄(ω))
N̄ , as σ0 and σ coincide on

(Hc̄(ω))
N̄ . Hence, there is a canonical embedding k1 : N1 −→ N0 (defined by

k1(σ1(f)(γ)) = σ0(f)(γ), for γ < c̄(ω)), so that k1 ◦ σ1 = σ0, and this embedding
is cofinal, by Corollary 2.11. But then the consistency of L1 implies that of L0

by Lemma 2.15, since L0 is like L1, with the parameters moved by k1, and with
N1 replaced by N0. Note here that N1 is almost full by the same lemma, since
σ1 : N̄ −→ N1 is cofinal and N̄ is (almost) full. 2(1)

Now let F be generic for Col(ω, 2θ). By Barwise compactness, in V[F ], there is
a model A for the theory L0, since this theory is countable in V[F ]. Let σ′ = σ̇A

and c′ = ċA. So

σ′ : N̄ −→ N0 c̄(ω)-cofinally, and c′ = (σ′)“c̄ is (MN0�Ω)-generic over N0

and

σ′(s̄, M̄, θ̄, δ̄) = sN0 ,MN0 , θN0 , δN0
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So this embedding is already pretty close to what we want to find in an M-generic
extension of V, the most obvious flaw being that it should map c̄ into an MN0 -
generic, not an MN0�Ω-generic. We will fix that by introducing a discontinuity
point at κ. Let

j : V −→UΩ
M

be the ultrapower and embedding by UΩ, M being transitive. Let M0 = j(N0),
and set

j(sN0 ,MN0 , θN0 , δN0 , ~UN0 , ~fN0) = sM0 ,MM0 , θM0 , δM0 , ~UM0 , ~fM0

Let L2 be the ZFC−-theory on Lα(M0)(M0) with extra constants σ̇, ċ and the
following additional axioms, with the differences to L0 highlighted:

1. σ̇ : N̄ −→M0 is a cofinal, elementary embedding.

2. σ̇(s̄, M̄, θ̄, δ̄) = sM0 ,MM0 , θM0 , δM0 .
3. σ̇“c̄ ⊆ ċ.
4. ċ is generic over M0 for MM0 .

(2) L2 is consistent.

Proof of (2). In V[F ], set σ2 = j ◦ σ′ : N̄ −→ M0. Since the critical point of j is
κ, c′ = j“c′.

We will need the following notation, see [2, Def. 4.1]. If M is a Magidor for-
cing of length λ, β < λ and δ ∈ BM

β , then we let M〈β,δ〉 = {〈t, T 〉 | 〈t, T 〉 ∈
M and t(β) = δ}. Further, we write M−〈β,δ〉 = {〈t�β, T �β〉 | 〈t, T 〉 ∈ M〈β,δ〉} and

M+
〈β,δ〉 = {〈t�(β, λ), T �(β, λ)〉 | 〈t, T 〉 ∈ M〈β,δ〉}. If all of these sets are equipped

with the natural partial ordering coming from M, it follows that M〈β,δ〉 is iso-

morphic to M−〈β,δ〉 ×M+
〈β,δ〉. And clearly, M〈β,δ〉 is like forcing with M below the

condition 〈{〈β, δ〉}, T 〉, where T is the weakest possible second coordinate for that
first coordinate.

The first thing I want to verify is that it makes sense to form, in M0, the poset
(MM0)−〈Ω,κ〉. The requirement is merely that κ ∈ (BΩ)M0 , where (BΩ)M0 is defined

in M0 from ~UM0 and ~fM0 as Bγ was defined in V. So (BΩ)M0 = j(BN0

Ω ). Since

δ ≥ κ+, it is clear that ~UN0

Ω = UΩ ∩ N0. So since BN0

Ω ∈ ~UN0

Ω , it follows that

BN0

Ω ∈ UΩ. So κ ∈ j(BN0

Ω ) = BM0

Ω , as wished.

The second point is that c′ is (MM0)−〈Ω,κ〉-generic over M0. Noting that by [2,

Lemma 4.2], (MM0)−〈Ω,κ〉 is a Magidor forcing itself, we again have to verify the two

conditions of Theorem 3.1 characterizing Magidor genericity. Since VN0
κ = VM0

κ ,
and c′ is MN0�Ω-generic over N0, only the first condition needs to be checked.

So let ~X = 〈Xi | i < Ω〉 ∈ M0 ∩
∏
i<ΩWi, where Wi = (~fM0)Ω

i (κ). Let’s try

to understand what Wi is. It’s j(~fN0)Ω
i (κ), i.e., [(~fN0)Ω

i ]UΩ
. But, again because

δ ≥ κ+, ~fN0 = ~f . SoWi = [fΩ
i ]UΩ

, which by the properties of the ~f sequence, means
that Wi = Ui. Thus, we are dealing with a sequence 〈Xi | i < Ω〉 ∈M0 ∩

∏
i<Ω Ui.

Note that ~X ∈M0 ⊆ V (we’re working in V[F ]). Since N0 is the transitive collapse
of CNδ (ran(σ)), and δ is the smallest size a dense subset of M can have (in V),
we have the following “density” property of N0 in V: given any sequence 〈Yi |
i < ωV

1 〉 ∈ V ∩
∏
i<ωV

1
Ui, there is a sequence 〈Zi | i < ωV

1 〉 ∈ N0 ∩
∏
i<ωV

1
Ui such

that for all sufficiently large i < ω1, Zi ⊆ Yi. This is because (temporarily arguing
in V) there is a dense subset D of M that has size δ and is a member of CNδ (ran(σ)),



8 GUNTER FUCHS

so that D ⊆ CNδ (ran(σ)), and it follows that D ∈ N0, since δ ≥ κ+. So there is

a condition 〈t, Z〉 ∈ D ⊆ N0, 〈t, T 〉 ≤ 〈∅, ~Y 〉. It follows that for all i < ωV
1 with

dom(t) ⊆ i, Zi ⊆ Yi. Applying this density property to ~X, let ~Z ∈ N0 be such
a sequence. By the fact that c′ is MN0�Ω-generic over N0, it follows that for all
sufficiently large ξ < Ω, c′(ξ) ∈ Zξ ⊆ Xξ. This verifies the first of the two genericity
conditions. The second one is immediate, as stated above.

Now, knowing that c′ is (MM0)−〈Ω,κ〉-generic over M0, we can let d ∈ V[F ] be

(MM0)+
〈Ω,κ〉-generic over M0[c′], and then set c′′ = c′ ∪ {〈Ω, κ〉} ∪ d. It is now easy

to check that c′′ is MM0 -generic over M0.
Finally, note that σ2 : N̄ −→M0 is cofinal. To see this, note that σ0 : N̄ −→ N0

is cofinal (even c̄(ω)-cofinal). As noted earlier, this implies that the cofinality of
On ∩N0 is ω, since N̄ is countable. As a result, j�N0 : N0 −→M0 is also cofinal.

Taken together, this shows that 〈H(2δ)+ , σ2, c
′′〉 is a model of L2. 2(2)

The main thing that’s wrong with L2, of course, is that the target model is M0

rather than N0 (ultimately, we want it to be N). So let L3 be the ZFC−-theory on
Lα(N0)(N0) in which this flaw is fixed. It has extra constants σ̇, ċ and the following
additional axioms, again with the differences to L2 highlighted:

1. σ̇ : N̄ −→ N0 is a cofinal, elementary embedding.

2. σ̇(s̄, M̄, θ̄, δ̄) = sN0 ,MN0 , θN0 , δN0 .
3. σ̇“c̄ ⊆ ċ.
4. ċ is generic over N0 for MN0 .

(3) L3 is consistent.

Proof of (3). This is because j(L3) = L2: j(N0) = M0, and j(“σ̇(s̄) = s”) =
“σ̇(s̄) = j(s)”, et cetera. L2 is consistent, so M believes that L2 is consistent, so

L3 = j−1(L2) is consistent, by elementarity. 2(3)

There are two issues that still need to be addressed: firstly, the closure in N of δ
union the range of the embedding we’re looking for should be equal to CNδ (ran(σ)),
and secondly, it should exist in a Magidor-generic extension of V, rather than in
V[F ]. To address these issues, we adopt an approach similar to the one Jensen used
in order to prove the subcompleteness of Př́ıkrý forcing, see [5, p. 128ff.].

We add one more requirement to the theory. Namely, let L4 be like L3, with the
additional axiom expressing that σ̇ is (κ̄+)N̄ -cofinal (not only cofinal). So L4 is the
ZFC−-theory on Lα(N0)(N0) with extra constants σ̇, ċ and the following additional
axioms, with the differences to L3 highlighted:

1. σ̇ : N̄ −→ N0 is a (κ̄+)N̄-cofinal, elementary embedding.

2. σ̇(s̄, M̄, θ̄, δ̄) = sN0 ,MN0 , θN0 , δN0 .
3. σ̇“c̄ ⊆ ċ.
4. ċ is generic over N0 for MN0 .

(4) L4 is consistent.

Proof of (4). In V[F ], let A be a model of L3. Let σ3 = σ̇A, c̃ = ċA. So σ3 : N̄ −→
N0 is cofinal and elementary, c̃ is MN0 -generic over N0 and σ3“c̄ ⊆ c̃. Thus, σ3 can
be extended canonically to an elementary embedding σ′3 : N̄ [c̄] −→ N0[c̃], so that
σ′3(c̄) = c̃. Let σ∗ : N̄ [c̄] −→σ′3�(Hκ̄+ )N̄ N5[c∗] be the liftup of N̄ [c̄] via σ′3�Hκ̄+ .
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Note that N̄ is of the form LĀτ = 〈Lτ [Ā],∈, Ā ∩ Lτ [Ā]〉. As a result, N̄ is easily
definable in N̄ [c̄] (without having to appeal to the definability of ground models in
forcing extensions, and worrying about the fact that N̄ may not be a ZFC model).

It follows then that the liftup of N̄ [c̄] must be of the form N5[c∗]. Note also

that (κ̄+)N̄ is still a regular cardinal in N̄ [c̄], since M̄ has the (κ̄+)N̄ -c.c. in N̄ .
Let k∗ : N5[c∗] −→ N0[c̃] be the canonical embedding, so k∗ ◦ σ∗ = σ′3. All of
these embeddings are cofinal. Let sN5 = σ∗(s̄), MN5 = σ∗(M̄), θN5 = σ∗(θ̄) and
δN5 = σ∗(δ̄).

Let σ̄∗ = σ∗�N̄ . Then σ̄∗ : N̄ −→ N5 is an elementary embedding and σ̄∗“c̄ ⊆ c∗,
where c∗ is MN5 -generic over N5. I claim that, moreover, σ̄∗ is (κ̄+)N̄ -cofinal. To
this end, let a ∈ N5. Then a ∈ σ∗(b), for some b ∈ N̄ [c̄] such that, letting β be
the cardinality of b in N̄ [c̄], β is at most κ̄. This is because σ̄∗ : N̄ [c̄] −→ N5[c∗]

is (κ̄+)N̄ -cofinal. We may assume that b ⊆ N̄ . Let f : β −→ b enumerate b,

f ∈ N̄ [c̄]. By the (κ̄+)N̄ -c.c., there is a function g ∈ N̄ , g : β −→ N̄ , such that
for every γ < β, f(γ) ∈ g(γ), and the cardinality of g(γ) is at most κ̄ in N̄ . Let
b̄ =

⋃
γ<β g(γ). Then b ⊆ b̄ and the N̄ -cardinality of b̄ is at most κ̄. Of course, now

we have that a ∈ σ∗(b) ⊆ σ∗(b̄) = σ̄∗(b̄).
So let L5 be the ZFC−-theory on Lα(N5)(N5) in the language with the extra

constants σ̇, ċ and the following additional axioms, with the differences to L4 high-
lighted:

1. σ̇ : N̄ −→ N5 is a (κ̄+)N̄ -cofinal, elementary embedding.

2. σ̇(s̄, M̄, θ̄, δ̄) = sN5 ,MN5 , θN5 , δN5 .
3. σ̇“c̄ ⊆ ċ.
4. ċ is generic over N5 for MN5 .

This theory L5 is consistent, since 〈Hµ, σ̄
∗, c∗〉 is a model, for sufficiently large

µ. Now, since k∗�N5 : N5 −→ N0 cofinally, and L5 is Σ1 over Lα(N5)(N5) in
the parameter N5, and some other parameters in N5, the theory over Lα(N0)(N0)
which has the same Σ1-definition in Lα(N0)(N0), with N5 replaced by N0 and the
parameters moved by k∗, is consistent, by Lemma 2.15. But that theory is L4. 2(4)

Now we can finish the proof as the proof of subcompleteness of Př́ıkrý forcing
in [5, p. 131 f.]. Let B ∈ V[F ] be a model of L4. Let σ̃∗ = σ̇B and d = ċB.

Then we have: σ̃∗ : N̄ −→ N0 is (κ̄+)N̄ -cofinal, σ̃∗“c̄ ⊆ d, and d is MN0 -generic

over N0. Since ~UN0
i = Ui ∩N0 and since for every ~X ∈

∏
i<ωV

1
Ui in V, there is a

~Y ∈
∏
i<ωV

1
Ui in N0 such that for all sufficiently large i < ω1, Yi ⊆ Xi, and since

(~fN0)ji = f ji (see the proof of (2)), it follows that d is not only N0-generic, but even
V-generic for M. Let σ̃ = k0 ◦ σ̃∗. Then σ̃ : N̄ −→ N , σ̃ moves the parameters
correctly, σ̃“c̄ ⊆ d and

(5) CNδ (ran(σ̃)) = CNδ (ran(σ)).

Proof of (5). First, note that N0 = CN0

δ (ran(σ̃∗)), because σ∗ is (κ̄+)N̄ -cofinal,
which means that every element of N0 is of the form σ∗(f)(ξ), for some ξ <

σ∗((κ̄+)N̄ ) ≤ δ. As in [5, p. 131], it follows that

CNδ (ran(σ)) = k0“N0 = k0“CN0

δ (ran(σ̃∗)) = CNδ (ran(σ̃)).

2(5)

It was crucial in the proof of the previous fact that σ∗ is (κ̄+)N̄ -cofinal. This is
why the consistency of L4 was needed.
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So σ̃ is exactly like the embedding we are looking for, except that we have to
find such an embedding in an M-generic extension of V, not in V[F ]. To do this,

working in V[d], let µ be regular with N ∈ Hµ. Let M̃ = 〈Hµ, N, d, θ,M, s, σ〉, and

let L6 be the ZFC−-theory on M̃ with extra constant σ̇ and the following additional
axioms:

1. σ̇ : N̄ −→ N is an elementary embedding.
2. σ̇(s̄, M̄, θ̄, δ̄) = s,M, θ, δ.
3. σ̇“c̄ ⊆ d.
4. CNδ (ran(σ̇)) = CNδ (ran(σ)).

Clearly, L6 is consistent, as witnessed by σ̃ ∈ V[F ]. Now, in V[d], let π : M̄ −→
M̃ be elementary with N, d, θ,M, s, σ ∈ ran(π), M̄ countable and transitive. Let L7

be the “preimage” of L6 under π. More precisely, L7 is the theory over M̄ that has
the same Σ1 definition over M̄ as L6 had over M̃ , with all the parameters moved
by π−1. Since L6 is consistent, so is L7. Since L7 is countable, it has a model Ā
(even in V). Let σ̄ = σ̇Ā. Note that M̃ sees that N̄ is countable, which implies
that π−1(N̄) = N̄ and π−1(c̄) = c̄. It follows that

1. σ̄ : N̄ −→ π−1(N) is elementary.
2. σ̄(s̄, M̄, θ̄, δ̄) = π−1(s), π−1(M), π−1(θ), π−1(δ).
3. σ̄“c̄ ⊆ π−1(d).

4. C
π−1(N)
π−1(δ) (ran(σ̄)) = C

π−1(N)
π−1(δ) (ran(π−1(σ))).

Let σ′ = π ◦ σ̄. Then σ′ ∈ V[d] is finally as wished. Namely, σ′ has the following
properties:

1.’ σ′ : N̄ −→ N is elementary.
2.’ σ′(s̄, M̄, θ̄, δ̄) = s,M, θ, δ.
3.’ (σ′)“c̄ ⊆ d.
4.’ CNδ (ran(σ′)) = CNδ (ran(σ)).

Here, 1.’ and 2.’ follow immediately from 1. and 2., respectively. To check 3.’,
let i < Ω. Then σ′(〈i, c̄(i)〉) = π(σ̄(〈i, c̄(i)〉)) = π(〈i, π−1(d)(i)〉) = 〈i, d(i)〉, since
σ̄“c̄ ⊆ π−1(d) and σ̄�Ω = π�Ω = id.

Finally, let’s verify point 4.’ in detail. The inclusion from left to right is clear be-

cause ran(σ̄) ⊆ Cπ
−1(N)

π−1(δ) (ran(π−1(σ))), which implies that ran(π◦σ̄) ⊆ CNδ (ran(σ)).

This, in turn, implies the desired inclusion immediately.
For the opposite direction, let c ∈ CNδ (ran(σ)). Writing fN for the canonical

Skolem function of N , there is an n < ω, an α < δ and an a ∈ N̄ such that

c = fN (n, 〈α, σ(a)〉)

We have that C
π−1(N)
π−1(δ) (ran(σ̄)) = C

π−1(N)
π−1(δ) (ran(π−1(σ))), and π−1(σ)(a) belongs to

the set on the right hand side of this equation. This means that there is an m < ω,

and α̃ < π−1(δ) and a b ∈ N̄ such that π−1(σ)(a) = fπ
−1(N)(m, 〈α̃, σ̄(b)〉). So

applying π to this fact gives

σ(a) = fN (m, 〈π(α̃), σ′(b)〉)

Substituting this into the equation above gives

c = fN (n, 〈α, fN (m, 〈π(α̃), σ′(b)〉)〉)

Since π(α̃) < δ, this is in CNδ (ran(σ′)), as wished.
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So we have found an embedding σ′ in V[d] with all the properties demanded by
subcompleteness. Thus, there is a condition in the M-generic filter associated to d
that forces the existence of such an embedding, concluding the proof. �
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