Mahler measure of the A-polynomial

Abhijit Champanerkar
University of South Alabama

International Conference on Quantum Topology Institute of Mathematics, VAST

Hanoi, Vietnam
Aug 6-12, 2007

Outline

History
$\operatorname{PSL}(2, \mathbb{C})$ A-polynomial

Mahler measure

Bloch-Wigner dilogarithm

Mahler measure of $\bar{A}_{0}(\ell, m)$

Examples

History

In 2000 David Boyd observed (numerically) that the two-variable Mahler measure of A-polynomials were equal to sums of hyperbolic volumes. In many cases it was equal to the volume.

In 2003 Boyd and Rodrigues-Villegas explained this observation and gave a technique to compute the Mahler measures of (tempered) two-variable polynomials.

In this talk I will explain:

- How this technique works for A-polynomials.
- Why A-polynomials are natural examples which work.

Ideal Triangulations

An ideal tetrahedron is a geodesic tetrahedron in hyperbolic 3 -space \mathbb{H}^{3} with all its four vertices on the sphere at infinity.

Every edge gets a complex number called the edge parameter. Isometry classes $\leftrightarrow\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. An ideal tetrahedron with edge parameter z is denoted by $\triangle(z)$.

An ideal triangulation of a cusped hyperbolic 3-manifold N is a decomposition into hyperbolic ideal tetrahedra.

Parameter Space

Let N be one-cusped hyperbolic 3-manifold triangulated with n tetrahedra.

- At every edge the tetrahedra close up and their parameters multiply to 1 . This gives gluing equations:

$$
\prod_{i=1}^{n} z_{i}^{r_{i j}^{\prime}}\left(1-z_{i}\right)^{r_{i j}^{\prime \prime}}= \pm 1, j=1, \ldots n
$$

- The cusp torus gives completeness equations:

$$
\begin{aligned}
& \ell(\mathbf{z})=\prod_{i=1}^{n} z_{i}^{l_{i}^{\prime}}\left(1-z_{i}\right)^{l_{i}^{\prime \prime}}=1 \\
& m(\mathbf{z})=\prod_{i=1}^{n} z_{i}^{m_{i}^{\prime}}\left(1-z_{i}\right)^{m_{i}^{\prime \prime}}=1
\end{aligned}
$$

- $P(N)=\left\{\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid\right.$ satisfy gluing equations $\}$ is called the parameter space of $N . P_{0}(N)$ is the component containing the complete parameter \mathbf{z}^{0}.

$\operatorname{PSL}(2, \mathbb{C})$ A-polynomial

Define $\mathrm{Hol}: P_{0}(N) \rightarrow \mathbb{C}^{2}$ as $\operatorname{Hol}(\mathbf{z})=(\ell(\mathbf{z}), m(\mathbf{z}))$. The image is a curve in \mathbb{C}^{2} and let $\bar{A}_{0}(\ell, m)$ be its defining equation.

Thm (C) $\bar{A}_{0}(\ell, m)$ is the component of the $\operatorname{PSL}(2, \mathbb{C})$ A-polynomial corresponding to the component containing the complete structure.

For knot complements

$$
\bar{A}_{0}\left(\ell^{2}, m^{2}\right)=A_{0}(\ell, m) A_{0}(-\ell, m)
$$

In general all four factors of the $\operatorname{SL}(2, \mathbb{C})$ A-polynomial can appear with signs on ℓ and m.

Mahler measure

Let $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$. The logarithmic Mahler measure of p is defined as

$$
m(p)=\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|p\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}}
$$

- $m\left(p_{1} \cdot p_{2}\right)=m\left(p_{1}\right)+m\left(p_{2}\right)$.
- Jensen's formula: $\frac{1}{2 \pi i} \int_{S^{1}} \log |x-\alpha| \frac{d x}{x}=\log ^{+}|\alpha|$
- Let $p(x)=a_{0} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$. Then $m(p)=\log \left|a_{0}\right|+\sum_{i=1}^{n} \log ^{+}\left|\alpha_{i}\right|$, where $\log ^{+}|\alpha|=\max \{0, \log |\alpha|\}$.

Volume Form or Regulator

Let $p(x, y) \in \mathbb{Z}[x, y]$ be irreducible polynomial.
$X=\left\{(x, y) \in \mathbb{C}^{2} \mid p(x, y)=0\right\}$
$\tilde{X}=$ smooth projective completion of X
$\mathbb{C}(\tilde{X})=$ field of meromorphic functions on \tilde{X}
For $f, g \in \mathbb{C}(\tilde{X})$, the Volume form is defined as

$$
\eta(f, g)=\log |f| d \arg g-\log |g| d \arg f
$$

$\eta \in H^{1}(\tilde{X}-S ; \mathbb{R})$ where $S=$ zeros and poles of $f \& g$.

Mahler measure of $p(x, y)$

Write $p(x, y)=a_{0}(y) \prod_{j=1}^{m}\left(x-x_{j}(y)\right)$ where x_{j} 's are algebraic
functions of y on \tilde{X}. By Jensen's formula

$$
\frac{1}{(2 \pi i)^{2}} \int_{\mathbb{T}^{2}} \log \left|x-x_{j}(y)\right| \frac{d x}{x} \frac{d y}{y}=\frac{1}{2 \pi i} \int_{S^{1}} \log ^{+}\left|x_{j}(y)\right| \frac{d y}{y}
$$

Let $\gamma_{j}=\left\{(x, y) \in \tilde{X}| | y\left|=1,\left|x_{j}\right| \geq 1\right\}\right.$ be an oriented path in \tilde{X}.
On $\gamma_{j}, \frac{d y}{y}=d \log |y|+i d \arg y=i d \arg y$.

$$
\begin{aligned}
i \eta\left(x_{j}, y\right) & =i\left(\log \left|x_{j}\right| d \arg y-\log |y| d \arg x_{j}\right) \\
& =i \log \left|x_{j}\right| d \arg y \\
& =\log |x| \frac{d y}{y}
\end{aligned}
$$

Prop $m(p(x, y))=m\left(a_{0}(y)\right)+\sum_{i=1}^{n} \frac{1}{2 \pi} \int_{\gamma_{j}} \eta\left(x_{j}, y\right)$

Bloch-Wigner dilogarithm

Lobachevsky function: $L(\theta)=-\int_{0}^{\theta} \log |2 \sin u| d u$
$\operatorname{vol}(\triangle(z))=L(\alpha)+L(\beta)+L(\gamma)$ where α, β, γ are the dihedral angles of $\triangle(z)$.

Classical dilogarithm: $\operatorname{Li}_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}},|z|<1$
It can be analytically extended to $\mathbb{C}-(1, \infty)$ as

$$
\operatorname{Li}_{2}(z)=-\int_{0}^{z} \frac{\log (1-u)}{u} d u
$$

The Bloch-Wigner dilogarithm is defined as

$$
D(z)=\operatorname{Im}\left(\operatorname{Li}_{2}(z)\right)+\log |z| \arg (1-z)
$$

Properties of $D(z)$

- $D(z)$ is real analytic on $\mathbb{C}-\{0,1\}$.
- $D\left(e^{i \theta}\right)=L(\theta)$
- Thm $\operatorname{vol}(\triangle(z))=D(z)$.

This follows from the 5-term relation and other functional equations of $D(z)$.

- Thm $\eta(z, 1-z)=d D(z)$.

If we can express $\eta(x, y)$ in terms of $\eta(z, 1-z)$'s then we can use Stokes Theorem to evaluate $m(p(x, y))$ in terms of $D(z)$ and get hyperbolic volumes.

Exactness of Volume Form

Let $F=\mathbb{C}(\tilde{X})$, there are maps

$$
\wedge_{\mathbb{Z}}^{2}\left(F^{*}\right) \xrightarrow{\text { sym }} K_{2}(F) \xrightarrow{\eta} H^{1}(\tilde{X} ; \mathbb{R})
$$

where $\operatorname{sym}(f \wedge g)=\{f, g\}$ and $\eta(\{f, g\})=\eta(f, g)$.
For $x, y, z_{i} \in F^{*}$, suppose in $\wedge_{\mathbb{Z}}^{2}\left(F^{*}\right)$ we can show

$$
x \wedge y=\sum_{i=1}^{n} z_{i} \wedge\left(1-z_{i}\right)
$$

Then $\eta(x, y)=\sum_{i=1}^{n} \eta\left(z_{i}, 1-z_{i}\right)=\sum_{i=1}^{n} d D(z)$

Let $X=P_{0}(N)$ and let $\ell, m, z_{i} \in F=\mathbb{C}\left(\widetilde{P_{0}(N)}\right)$.
$\operatorname{Thm}(C) \ln \wedge_{\mathbb{Z}}^{2}\left(F^{*}\right), \ell \wedge m=\sum_{i=1}^{n} z_{i} \wedge\left(1-z_{i}\right)$.
$\Longrightarrow \eta(\ell, m)=d\left(\sum_{i=1}^{n} D\left(z_{i}\right)\right)$
$\sum_{i=1}^{n} D\left(z_{i}\right)=\operatorname{vol}(N(\mathbf{z}))$
Hence $\eta(\ell, m)$ gives variation of volume under deformation and hence is called the volume form.

Exactness of $\eta(\ell, m)$ was directly shown by Hodgson and Neumann-Zagier.

Mahler measure of $\bar{A}_{0}(\ell, m)$

Let $\gamma_{j}=\left\{|m|=1,\left|\ell_{j}\right| \geq 1\right\}$.
Let each γ_{j} have c_{j} components.
Let $\omega_{i j k}^{1}$ and $\omega_{i j k}^{2}$ be lifts of the end points of γ_{j} to $P_{0}(N)$.

$$
\begin{aligned}
m\left(\bar{A}_{0}(\ell, m)\right) & =\frac{1}{2 \pi} \sum_{j=1}^{m} \int_{\gamma_{j}} \eta\left(\ell_{j}, m\right) \\
& =\frac{1}{2 \pi} \sum_{j=1}^{m} \sum_{k=1}^{c_{j}} \sum_{i=1}^{n}\left(D\left(\omega_{i j k}^{2}\right)-D\left(\omega_{i j k}^{1}\right)\right)
\end{aligned}
$$

Remarks

- Since $\bar{A}_{0}(1,1)=0$ and $(1,1)$ corresponds to the complete structure, $\operatorname{vol}(N)$ always appears as a summand in above.
- Conjugate lifts of $(1,1)$ to $P_{0}(N)$ correspond to different complex embeddings of the invariant trace field of N.

These give conjugate volumes in the summand.

- $\sum_{i=1}^{n}\left[\omega_{i j k}^{s}\right]$ are elements of the Bloch group $\mathcal{B}(\mathbb{C})$.

Examples

- $K=4_{1}, \pi m\left(\bar{A}_{0}(\ell, m)\right)=\operatorname{vol}\left(S^{3}-K\right)$.
- $K=\sigma_{2}, \pi m\left(\bar{A}_{0}(\ell, m)\right)=\operatorname{vol}\left(S^{3}-K\right)+V_{2}$, where V_{2} is the conjugate volume given by the Borel regulator.
- $K=k 5_{15} \cong m 240, \pi m\left(\bar{A}_{0}(\ell, m)\right)=\operatorname{vol}\left(S^{3}-K\right)+V_{2}+V_{3}$, where $V_{2}=\operatorname{vol}(m 240(0,1))$ and $V_{3}=\operatorname{vol}(m 240(0,2))$.

Marc Culler has a program which computes A-polynomials. In addition it also computes the necessary information to compute its Mahler measure (numerically).

Neumann-Zagier matrices

Let $J_{2 k}=\left(\begin{array}{cc}0 & \mathrm{Id}_{k} \\ -\mathrm{Id}_{k} & 0\end{array}\right)$ be the symplectic matrix.
A $(n+2) \times 2 n$ matrix U is called a Neumann-Zagier matrix if it satisfies

$$
U J_{2 n} U^{t}=2\left(\begin{array}{cc}
J_{2} & 0 \\
0 & 0
\end{array}\right)
$$

Thm (Neumann-Zagier 85) The exponents of the gluing and completeness euqation satisfy the above condition.

Starting with any NZ matrix U, we can form "gluing" and "completeness" equations to obtain an A-polynomial. We can compute its Mahler measure using this method.

Com On Nhieu Lam

Thank You Very Much

