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History

In 2000 David Boyd observed (numerically) that the two-variable
Mahler measure of A-polynomials were equal to sums of hyperbolic
volumes. In many cases it was equal to the volume.

In 2003 Boyd and Rodrigues-Villegas explained this observation
and gave a technique to compute the Mahler measures of
(tempered) two-variable polynomials.

In this talk I will explain:

• How this technique works for A-polynomials.

• Why A-polynomials are natural examples which work.
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Ideal Triangulations

An ideal tetrahedron is a geodesic tetrahedron in hyperbolic
3-space H3 with all its four vertices on the sphere at infinity.

0

z
z

1

Every edge gets a complex number called the edge parameter.
Isometry classes ↔ {z ∈ C| Im(z) > 0}. An ideal tetrahedron with
edge parameter z is denoted by 4(z).

An ideal triangulation of a cusped hyperbolic 3-manifold N is a
decomposition into hyperbolic ideal tetrahedra.
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Parameter Space

Let N be one-cusped hyperbolic 3-manifold triangulated with n
tetrahedra.

• At every edge the tetrahedra close up and their parameters
multiply to 1. This gives gluing equations:
n∏

i=1

z
r ′
ij

i (1− zi )
r ′′
ij = ±1, j = 1, . . . n.

• The cusp torus gives completeness equations:

`(z) =
n∏

i=1

z
l ′i
i (1− zi )

l ′′i = 1

m(z) =
n∏

i=1

z
m′

i
i (1− zi )

m′′
i = 1

• P(N) = {z = (z1, . . . , zn) ∈ Cn| satisfy gluing equations} is
called the parameter space of N. P0(N) is the component
containing the complete parameter z0.
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PSL(2, C) A-polynomial

Define Hol : P0(N) → C2 as Hol(z) = (`(z),m(z)). The image is
a curve in C2 and let A0(`,m) be its defining equation.

Thm (C) A0(`,m) is the component of the PSL(2, C)
A-polynomial corresponding to the component containing the
complete structure.

For knot complements

A0(`
2,m2) = A0(`,m)A0(−`,m)

In general all four factors of the SL(2, C) A-polynomial can appear
with signs on ` and m.
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Mahler measure

Let p(x1, . . . , xn) ∈ C[x±1 , . . . , x±n ]. The logarithmic Mahler
measure of p is defined as

m(p) =
1

(2πi)n

∫
Tn

log |p(x1, . . . , xn)|
dx1

x1
. . .

dxn

xn

• m(p1 · p2) = m(p1) + m(p2).

• Jensen’s formula:
1

2πi

∫
S1

log |x − α| dx

x
= log+ |α|

• Let p(x) = a0

n∏
i=1

(x − αi ). Then m(p) = log |a0|+
n∑

i=1

log+ |αi |,

where log+ |α| = max{0, log |α|}.
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Volume Form or Regulator

Let p(x , y) ∈ Z[x , y ] be irreducible polynomial.
X = {(x , y) ∈ C2| p(x , y) = 0}
X̃= smooth projective completion of X
C(X̃ )= field of meromorphic functions on X̃

For f , g ∈ C(X̃ ), the Volume form is defined as

η(f , g) = log |f | d arg g − log |g | d arg f

η ∈ H1(X̃ − S ; R) where S= zeros and poles of f &g .
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Mahler measure of p(x , y)

Write p(x , y) = a0(y)
m∏

j=1

(x − xj(y)) where xj ’s are algebraic

functions of y on X̃ . By Jensen’s formula

1

(2πi)2

∫
T2

log |x − xj(y)| dx

x

dy

y
=

1

2πi

∫
S1

log+ |xj(y)| dy

y

Let γj = {(x , y) ∈ X̃ | |y | = 1, |xj | ≥ 1} be an oriented path in X̃ .

On γj ,
dy

y
= d log |y |+ id arg y = id arg y .
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iη(xj , y) = i(log |xj | d arg y − log |y | d arg xj)

= i log |xj | d arg y

= log |x |dy

y

Prop m(p(x , y)) = m(a0(y)) +
n∑

i=1

1

2π

∫
γj

η(xj , y)
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Bloch-Wigner dilogarithm

Lobachevsky function: L(θ) = −
∫ θ

0
log |2 sin u| du

vol(4(z)) = L(α) + L(β) + L(γ) where α, β, γ are the dihedral
angles of 4(z).

Classical dilogarithm: Li2(z) =
∞∑

n=1

zn

n2
, |z | < 1

It can be analytically extended to C− (1,∞) as

Li2(z) = −
∫ z

0

log(1− u)

u
du

The Bloch-Wigner dilogarithm is defined as

D(z) = Im(Li2(z)) + log |z | arg(1− z)
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Properties of D(z)

• D(z) is real analytic on C− {0, 1}.

• D(e iθ) = L(θ)

• Thm vol(4(z)) = D(z).
This follows from the 5-term relation and other functional
equations of D(z).

• Thm η(z , 1− z) = dD(z).

If we can express η(x , y) in terms of η(z , 1− z)’s then we can use
Stokes Theorem to evaluate m(p(x , y)) in terms of D(z) and get
hyperbolic volumes.
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Exactness of Volume Form

Let F = C(X̃ ), there are maps

∧2
Z(F ∗)

sym−−−−→ K2(F )
η−−−−→ H1(X̃ ; R)

where sym(f ∧ g) = {f , g} and η({f , g}) = η(f , g).

For x , y , zi ∈ F ∗, suppose in ∧2
Z(F ∗) we can show

x ∧ y =
n∑

i=1

zi ∧ (1− zi )

Then η(x , y) =
n∑

i=1

η(zi , 1− zi ) =
n∑

i=1

dD(z)



Exactness of Volume Form

Let F = C(X̃ ), there are maps

∧2
Z(F ∗)

sym−−−−→ K2(F )
η−−−−→ H1(X̃ ; R)

where sym(f ∧ g) = {f , g} and η({f , g}) = η(f , g).

For x , y , zi ∈ F ∗, suppose in ∧2
Z(F ∗) we can show

x ∧ y =
n∑

i=1

zi ∧ (1− zi )

Then η(x , y) =
n∑

i=1

η(zi , 1− zi ) =
n∑

i=1

dD(z)



Exactness of Volume Form

Let F = C(X̃ ), there are maps

∧2
Z(F ∗)

sym−−−−→ K2(F )
η−−−−→ H1(X̃ ; R)

where sym(f ∧ g) = {f , g} and η({f , g}) = η(f , g).

For x , y , zi ∈ F ∗, suppose in ∧2
Z(F ∗) we can show

x ∧ y =
n∑

i=1

zi ∧ (1− zi )

Then η(x , y) =
n∑

i=1

η(zi , 1− zi ) =
n∑

i=1

dD(z)



Let X = P0(N) and let `,m, zi ∈ F = C(P̃0(N)).

Thm(C) In ∧2
Z(F ∗), ` ∧m =

n∑
i=1

zi ∧ (1− zi ).

=⇒ η(`,m) = d(
n∑

i=1

D(zi ))

n∑
i=1

D(zi ) = vol(N(z))

Hence η(`,m) gives variation of volume under deformation and
hence is called the volume form.

Exactness of η(`,m) was directly shown by Hodgson and
Neumann-Zagier.
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Mahler measure of A0(`, m)

Let γj = {|m| = 1, |`j | ≥ 1}.
Let each γj have cj components.
Let ω1

ijk and ω2
ijk be lifts of the end points of γj to P0(N).

m(A0(`,m) ) =
1

2π

m∑
j=1

∫
γj

η(`j ,m)

=
1

2π

m∑
j=1

cj∑
k=1

n∑
i=1

(
D(ω2

ijk)− D(ω1
ijk)

)
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Remarks

• Since A0(1, 1) = 0 and (1, 1) corresponds to the complete
structure, vol(N) always appears as a summand in above.

• Conjugate lifts of (1, 1) to P0(N) correspond to different
complex embeddings of the invariant trace field of N.

These give conjugate volumes in the summand.

•
n∑

i=1

[ωs
ijk ] are elements of the Bloch group B(C).
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Examples

• K = 41, πm(A0(`,m) ) = vol(S3 − K ).

• K = 62, πm(A0(`,m) ) = vol(S3 − K ) + V2, where V2 is the
conjugate volume given by the Borel regulator.

• K = k515
∼= m240, πm(A0(`,m) ) = vol(S3 − K ) + V2 + V3,

where V2 = vol(m240(0, 1)) and V3 = vol(m240(0, 2)).

Marc Culler has a program which computes A-polynomials. In
addition it also computes the necessary information to compute its
Mahler measure (numerically).
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Neumann-Zagier matrices

Let J2k =

(
0 Idk

−Idk 0

)
be the symplectic matrix.

A (n + 2)× 2n matrix U is called a Neumann-Zagier matrix if it
satisfies

UJ2nU
t = 2

(
J2 0
0 0

)
Thm (Neumann-Zagier 85) The exponents of the gluing and
completeness euqation satisfy the above condition.

Starting with any NZ matrix U, we can form “gluing” and
“completeness” equations to obtain an A-polynomial. We can
compute its Mahler measure using this method.
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