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Euler

Leonhard Euler (1707-1783)

Leonhard Euler was a Swiss mathematician who made enormous
contibutions to a wide range of fields in mathematics.



Euler: Some contributions

I Euler introduced and popularized several notational
conventions through his numerous textbooks, in particular the
concept and notation for a function.

I In analysis, Euler developed the idea of power series, in
particular for the exponential function ex . The notation e
made its first appearance in a letter Euler wrote to Goldbach.

I For complex numbers he discovered the formula
e iθ = cos θ + i sin θ and the famous identity e iπ + 1 = 0.

I In 1736, Euler solved the problem known as the Seven Bridges
of Königsberg and proved the first theorem in Graph Theory.

I Euler proved numerous theorems in Number theory, in
particular he proved that the sum of the reciprocals of the
primes diverges.



Convex Polyhedron

A polyhedron is a solid in R3 whose faces are polygons.

A polyhedron P is convex if the line segment joining any two
points in P is entirely contained in P.
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Euler’s Polyhedral Formula

Euler’s Formula

Let P be a convex polyhedron. Let v be the number of vertices, e
be the number of edges and f be the number of faces of P. Then
v − e + f = 2.

Examples

Tetrahedron Cube Octahedron
v = 4, e = 6, f = 4 v = 8, e = 12, f = 6 v = 6, e = 12, f = 8
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Euler’s Polyhedral Formula

Euler mentioned his result in a letter to Goldbach (of Goldbach’s
Conjecture fame) in 1750. However Euler did not give the first
correct proof of his formula.

It appears to have been the French mathematician Adrian Marie
Legendre (1752-1833) who gave the first proof using Spherical
Geometry.

Adrien-Marie Legendre (1752-1833)



Basics of Geometry

Euclid’s Postulates

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a
straight line.

3. Given any straight line segment, a circle can be drawn having
the segment as radius and one endpoint as center.

4. All right angles are congruent.



Parallel Postulate

Parallel Postulate: If two lines are drawn which intersect a third
in such a way that the sum of the inner angles on one side is less
than two right angles, then the two lines inevitably must intersect
each other on that side if extended far enough.

Equivalently: At most one line can be drawn through any point not
on a given line parallel to the given line in a plane.

Failure of Parallel Postulate gives rise to non-Euclidean geometries.

No lines → Spherical geometry (positively curved)
Infinitely many lines → Hyperbolic geometry (negatively curved)
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Spherical geometry

Let S2 denote the unit sphere in R3 i.e. the set of all unit vectors
i.e. the set {(x , y , z) ∈ R3| x2 + y2 + z2 = 1 }.

A great circle in S2 is a circle which divides the sphere in half. In
other words, a great circle is the interesection of S2 with a plane
passing through the origin.
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Great circles are straight lines

Great circles play the role of straight lines in spherical geometry.

Given two distinct points on S2, there is a great circle passing
through them obtained by the intersection of S2 with the plane
passing through the origin and the two given points.

You can similarly verify the other three Euclid’s posulates for
geometry.
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Diangles

Any two distinct great circles inter-
sect in two points which are nega-
tives of each other.

The angle between two great circles at an intersection point is the
angle between their respective planes.

A region bounded by two great circles is called a diangle.

The angle at both the vertices are equal. Both diangles bounded
by two great circles are congruent to each other.
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Area of a diangle

Proposition

Let θ be the angle of a diangle. Then the area of the diangle is 2θ.

Proof: The area of the diangle is proportional to its angle. Since
the area of the sphere, which is a diangle of angle 2π, is 4π, the
area of the diangle is 2θ.

Alternatively, one can compute this area directly as the area of a
surface of revolution of the curve z =

√
1− y2 by an angle θ. This

area is given by the integral
∫ 1
−1 θz

√
1 + (z ′)2 dy . �

If the radius of the sphere is r then the area of the diangle is 2θr2.

This is very similar to the formula for the length of an arc of the
unit circle which subtends an angle θ is θ.
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Spherical polygons

A spherical polygon is a polygon on S2 whose sides are parts of
great circles.

More Examples. Take ballon, ball and draw on it.

Spherical Triangle
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Area of a spherical triangle

Theorem

The area of a spherical triangle with angles α, β and γ is α+β+γ−π.

Proof:
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Area of a spherical triangle

B

A

C

F

E

D

4ABC as shown above is formed by the intersection of three great
circles.

Vertices A and D are antipodal to each other and hence have the
same angle. Similarly for vertices B,E and C ,F . Hence the
triangles 4ABC and 4DEF are antipodal (opposite) triangles and
have the same area.

Assume angles at vertices A,B and C to be α, β and γ respectively.



Area of a spherical triangle

B

A

C

F

E

D

4ABC RAD RBE RCF

Let RAD , RBE and RCF denote pairs of diangles as shown. Then
4ABC and 4DEF each gets counted in every diangle.

RAD ∪ RBE ∪ RCF = S2, Area(4ABC ) = Area(4DEF ) = X .

Area(S2) = Area(RAD) + Area(RBE ) + Area(RCF )− 4X

4π = 4α + 4β + 4γ − 4X

X = α + β + γ − π

�
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Area of a spherical polygon

Corollary

Let R be a spherical polygon with n vertices and n sides with interior
angles α1, . . . , αn. Then Area(R) = α1 + . . .+ αn − (n − 2)π.

Proof: Any polygon with n sides for n ≥ 4 can be divided into
n − 2 triangles.

The result follows as the angles of these triangles add up to the
interior angles of the polygon. �
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Proof of Euler’s Polyhedral Formula

Let P be a convex polyhedron in R3. We can “blow air” to make
(boundary of) P spherical.

This can be done rigourously by arranging P so that the origin lies
in the interior of P and projecting the boundary of P on S2 using
the function f (x , y , z) = (x ,y ,z)√

x2+y2+z2
.

It is easy to check that vertices of P go to points on S2, edges go
to parts of great circles and faces go to spherical polygons.
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Proof of Euler’s Polyhedral Formula

Let v , e and f denote the number of vertices, edges and faces of P
respectively. Let R1, . . . ,Rf be the spherical polygons on S2.

Since their union is S2, Area(R1) + . . .+ Area(Rf ) = Area(S2).

Let ni be the number of edges of Ri and αij for j = 1, . . . , ni be its
interior angles.

f∑
i=1

(

ni∑
j=1

αij − niπ + 2π) = 4π

f∑
i=1

ni∑
j=1

αij −
f∑

i=1

niπ +
f∑

i=1

2π = 4π



Proof of Euler’s Polyhedral Formula

Since every edge is shared by two polygons

f∑
i=1

niπ = 2πe.

Since the sum of angles at every vertex is 2π

f∑
i=1

ni∑
j=1

αij = 2πv .

Hence 2πv − 2πe + 2πf = 4π that is v − e + f = 2 �



Why Five ?

A platonic solid is a polyhedron all of whose vertices have the same
degree and all of its faces are congruent to the same regular
polygon. We know there are only five platonic solids. Let us see
why.

Tetrahedron Cube Octahedron Icosahedron Dodecahedron

v = 4 v = 8 v = 6 v = 12 v = 20

e = 6 e = 12 e = 12 e = 30 e = 30

f = 4 f = 6 f = 8 f = 20 f = 12
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Why Five ?

Let P be a platonic solid and suppose the degree of each of its
vertex is a and let each of its face be a regular polygon with b
sides. Then 2e = af and 2e = bf . Note that a, b ≥ 3.

By Euler’s Theorem, v − e + f = 2, we have

2e

a
− e +

2e

b
= 2

1

a
+

1

b
=

1

2
+

1

e
>

1

2

If a ≥ 6 or b ≥ 6 then 1
a + 1

b ≤
1
3 + 1

6 = 1
2 . Hence a < 6 and b < 6

which gives us finitely many cases to check.
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Why Five ?

a b e v Solid

3 3 6 4 Tetrahedron

3 4 12 6 Octahedron

3 5 30 12 Icosahedron

4 3 12 8 Cube

4 4 1
4 + 1

4 = 1
2 !

4 5 1
4 + 1

5 = 9
20 <

1
2 !

5 3 30 20 Dodecahedron

5 4 1
4 + 1

5 = 9
20 <

1
2 !

5 5 1
5 + 1

5 = 2
5 <

1
2 !
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Plane graphs

Note that we actually proved the Theorem for any (geodesic)
graph on the sphere.

Any plane graph can be made into a graph on a sphere by tying up
the unbounded face (like a balloon). However one may need to
make some modifications (which do not change the count
v − e + f ) to make the graph geodesic on the sphere (keywords:
k-connected for k = 1, 2, 3).

Theorem

If G is a connected plane graph with v vertices, e edges and f faces
(including the unbounded face), then v − e + f = 2.

This theorem from graph theory can be proved directly by
induction on the number of edges and gives another proof of
Euler’s Theorem !
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Surfaces

What about graphs on other surfaces ?



Other surfaces

2−3+1=02−2+1=1

We need the restriction that every face of the graph on the surface
is a disk.

Given this restriction the number v − e + f does not depend on
the graph but depends only on the surface.

The number χ = v − e + f is called the Euler characteristic of the
surface. χ = 2− 2g where g is the genus of the surface i.e. the
number of holes in the surface.



Other surfaces

2−3+1=02−2+1=1

We need the restriction that every face of the graph on the surface
is a disk.

Given this restriction the number v − e + f does not depend on
the graph but depends only on the surface.

The number χ = v − e + f is called the Euler characteristic of the
surface. χ = 2− 2g where g is the genus of the surface i.e. the
number of holes in the surface.



Other surfaces

2−3+1=02−2+1=1

We need the restriction that every face of the graph on the surface
is a disk.

Given this restriction the number v − e + f does not depend on
the graph but depends only on the surface.

The number χ = v − e + f is called the Euler characteristic of the
surface. χ = 2− 2g where g is the genus of the surface i.e. the
number of holes in the surface.



Thank You

Slides available from:
http://www.math.csi.cuny.edu/abhijit/talks.html


