
A-POLYNOMIAL AND BLOCH INVARIANTS OF

HYPERBOLIC 3-MANIFOLDS

ABHIJIT CHAMPANERKAR

Abstract. Let N be a complete, orientable, finite-volume, one-cusped
hyperbolic 3-manifold with an ideal triangulation. Using combinatorics
of the ideal triangulation of N we construct a plane curve in C×C which
contains the squares of eigenvalues of PSL(2, C) representations of the
meridian and longitude. We show that the defining polynomial of this
curve is related to the PSL(2, C) A-polynomial and has properties similar
to the classical A-polynomial. We further show that a factor of this
polynomial, A0(l, m), associated to the discrete, faithful representation
of π1(N) in PSL(2, C) is independent of the ideal triangulation. The
Bloch invariant β(N) of N is related to the volume and Chern-Simons
invariant of N . The variation of Bloch invariant is defined to be the
change of β(N) under Dehn surgery on N . We relate A0(l, m) to the

variation of the Bloch invariant of N . We show that A0(l, m) determines

the variation of Bloch invariant in the case when A0(l, m) is a defining
equation of a rational curve. We also show that in this case the Bloch
invariant reads the symmetry of A0(l, m).

1. Introduction

This paper is divided into 2 parts. In the first part we study a two variable
polynomial arising from the combinatorics of ideal triangulations of a cusped
hyperbolic 3-manifold. Next we study the variation of Bloch invariants of
hyperbolic 3-manifolds and relate it to this polynomial.

Essential surfaces are central to understanding the topology of 3-manifolds.
Culler and Shalen [14] studied character varieties of SL(2, C) representations
of 3-manifolds groups and used them to detect essential surfaces in 3-manifolds.
The authors of [7] constructed a plane curve using representations of the
meridian and longitude in SL(2, C) and using ideas developed in [14] showed
that this plane curve carried topological information about essential surfaces
in a 3-manifold with torus boundary. The A-polynomial is the defining equa-
tion of this plane curve. The A-polynomial provided a computable tool to
study information obtained from SL(2, C) character varieties. It has many
interesting properties and has emerged as an important tool in studying the
topology of 3-manifolds. In an analogous manner the PSL(2, C) character
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variety was studied in [3]. For more details on SL(2, C) character varieties
see [13], [14] and [35] and for A-polynomials see [7], [8], [9], [10].

Ideal triangulations are combinatorial triangulations with vertices at infinity.
Ideal triangulations arise naturally in the study of of cusped hyperbolic 3-
manifolds and play an important role in their study. Thurston [38] showed
that any hyperbolic 3-manifold is obtainable from a cusped one by Dehn
surgeries on some of the cusps. Epstein and Penner [20] showed that any
cusped hyperbolic 3-manifold can be decomposed into ideal polyhedra. Ideal
triangulations arise in practice, e.g. in the program SnapPea [40] written by
Jeff Weeks for studying hyperbolic 3-manifolds. Ideal triangulations have
been used to study geometric invariants like volume [31], Chern-Simons
[26], arithmetic invariants like the invariant trace field [28], [34] and Bloch
invariants [30], essential surfaces in hyperbolic 3-manifolds [39], [43] and
Dehn surgeries on cusps of hyperbolic 3-manifolds [15].

We construct a two variable polynomial using ideal triangulations as fol-
lows. Let N be a one-cusped, complete, orientable, finite-volume hyper-
bolic 3-manifold having an ideal triangulation T with n tetrahedra. N is
homeomorphic to the interior of a 3-manifold with torus boundary. Using
the combinatorics of the triangulation developed in [31] one obtains n glu-
ing equations and 2 completeness equations in the cross-ratio parameters
z1, . . . , zn of the ideal tetrahedra, considered as hyperbolic ideal tetrahedra.
The complete hyperbolic structure on N is given by parameters z0

1 , . . . , z0
n

which satisfy the gluing and completeness equations and lie in the upper-half
plane. Let

P (N) = {(z1, . . . , zn, t) ∈ Cn+1 : (z1, . . . , zn) satisfy gluing equations and

t
n

∏

i=1

zi(1− zi) = 1}

We call P (N) the Parameter Space of N depending on the triangulation
T . The coordinate t ensures that the degenerate values of the parameters
(i.e.zi = 0, 1) do not occur in P (N). The completeness equations give the
square of eigenvalues of the meridian and longitude in the holonomy repre-
sentation of π1(N) to PSL(2, C) as rational functions in zi’s. Using this we
define a map Hol: P (N) → C × C given by Hol(z, t) = (l(z),m(z)). The
image of Hol is a curve and we call it the Holonomy Variety of N and denote
it by H(N). The defining polynomial of H(N) is denoted by H(l,m).

We define the PSL(2, C) analog of the classical A-polynomial as the defin-
ing polynomial of the curve containing the squares of eigenvalues of rep-
resentations of the meridian and longitude in PSL(2, C) which extend to
representations of π1(N). Let us denote this polynomial by A(l,m). We
show:
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Theorem H(l,m) divides the PSL(2, C) A-polynomial A(l,m).

Let P0(N) denote the component of the Parameter Space containing the
parameter z = (z0

1 , . . . z0
n) for the complete structure. Let H0(N) be the

image of P0(N) under the map Hol and let H0(l,m) denote the correspond-
ing factor of H(l,m). Since the complete hyperbolic structure can also be
described as a discrete, faithful representation in PSL(2, C), we obtain a
similar factor of A(l,m) which we denote by A0(l,m). We show:

Theorem H0(l,m) = A0(l,m) and hence the polynomial H0(l,m) is inde-
pendent of the ideal triangulation of N .

We will denote H0(l,m) by A0(l,m) from now on. The Newton polygon of
a polynomial p(x, y) =

∑

cmnxmyn is the convex hull of the points (m,n) ∈
Z × Z where cmn 6= 0. If S is an incompressible surface with non-empty
boundary in N then ∂S is a family of simple closed curves on ∂N and hence
determine a homology class in H1(∂N ; Z) given by pM+ qL. The boundary
slope of S is the rational number p/q. It is proved in [7] that the slopes of
the sides of the Newton polygon of the A-polynomial are boundary slopes
of essential surfaces in the 3-manifold.

Theorem The slopes of the sides of the Newton Polygon of H(l,m) are
boundary slopes of incompressible surfaces in M which correspond to ideal
points of H(N).

The terms of a two variable polynomial appearing along an edge of its New-
ton polygon may be viewed as a polynomial in a single variable called an
edge polynomial. Another interesting property of the A-polynomial proved
in [7] is that its edge polynomials are cyclotomic. Using a K- theoretic
argument similar to the one given in [7] we show

Theorem H(l,m) has cyclotomic edge polynomials.

It follows from the work of Thurston [38] that hyperbolic geometry is preva-
lent in 3-manifolds and understanding geometric invariants is an important
tool in the study of 3-manifolds. Bloch invariants for hyperbolic 3-manifolds
were introduced by Neumann and Yang in [30]. Bloch invariants capture
geometric information such as volume, Chern-Simons invariant and scissors
congruence information of the hyperbolic 3-manifold. C−{0, 1} is the cross
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ratio parameter space for non-degenerate, ordered hyperbolic, ideal tetrahe-
dra up to isometry. The pre-Bloch group P(C) is defined as

P(C) = Z(C− {0, 1})/(5-term relations)

where 5-term relations relate the parameters of tetrahedra when a hyperbolic
polytope on five ideal vertices is decomposed as two ideal tetrahedra with
a common face or as three ideal tetrahedra with a common edge. P(C) is
the orientation sensitive analog of the scissors congruence group of H3. The
analog of the Dehn invariant for scissors congruence is a map

µ : P(C)→ C∗ ∧ C∗

defined by µ([z]) = 2 (z ∧ (1 − z)). The Bloch group of C is defined to be
ker(µ) and denoted as B(C). A well known conjecture is

Conjecture (Bloch Rigidity Conjecture) The Bloch group B(C) is countable.

Given an ideal triangulation of N with cross-ratio parameters z0
1 , . . . , z0

n, the
Bloch invariant of N , β(N) =

∑

[z0
i ]. In [30], Neumann and Yang proved

that β(N) ∈ B(C) and is independent of the choice of ideal triangulation
of N . The Bloch regulator map, ρ : B(C) → C/π2Q relates β(N) to the
volume and Chern-Simons invariant of N .

For (z, t) ∈ P0(N), let N(z) denote the manifold obtained by gluing n ideal
tetrahedra with parameters z1, . . . , zn and the same gluing pattern as N .
Then the Bloch invariant of N(z) is still defined but belongs to P(C) in
general and belongs to B(C) when z corresponds to a (p, q) Dehn surgery.
Let ∆βN (z) = β(N) − β(N(z)). We call ∆βN the variation of the Bloch
invariant. ∆N is a function from P0(N) to P(C). Variation of the volume
and Chern-Simons is similarly defined. It is shown implicitly in [31] that
A0(l,m) determines the variation of volume of N and implicitly in [42] that
A0(l,m) determines the variation of the Chern-Simons invariant of N. A well
known conjecture from K-theory states that:

Conjecture (Ramakrishnan Conjecture) The Bloch regulator map ρ is in-
jective.

In view of Ramakrishnan’s Conjecture it is natural to make the following
conjecture:

Conjecture A0(l,m) determines the variation of the Bloch invariant.

We show:
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Theorem If two one-cusped hyperbolic 3-manifolds have the same A0(l,m) then
the difference of the variation of their Bloch invariant has image in B(C).

Since ∆βN is defined for values in P0(N), in view of the Bloch Rigidity
Conjecture we expect that the difference in variation is constant and hence
determined by A0(l,m) . We bypass the Bloch Rigidity Conjecture in the
case when A0(l,m) is an equation of a rational curve. We show:

Theorem A0(l,m) determines the variation of the Bloch invariant if A0(l,m) is
an equation of a rational curve.

Let N(p, q) denote the manifold obtained by Dehn filling a (p, q) curve on
the torus boundary of N . Symmetries of A0(l,m) translate to symmetries
of the Bloch invariant. We show:

Theorem If A0(l,m) is an equation of a rational curve and A0(l,m) =
A0(l

amb, lcmd) then β(N(p, q)) = β(N(ap + bq, cp + dq)).

Acknowledgements: This paper is part of my Ph.D. thesis at Columbia
University. It is my pleasure to thank my advisor Walter Neumann for his
guidance, encouragement and patience.

2. The PSL A-Polynomial

2.0.1. Definitions in the SL(2, C) case. Let N be a 3-manifold and let G =
π1(N). Then the SL(2, C) representation variety of N is defined as R(N) =
Hom(G,SL(2, C)). Since N is a 3-manifold its fundamental group G is
finitely presented. Let G = 〈g1, . . . , gn : r1, . . . rm〉 be a presentation of G.
Using this presentation it is easy to see that R(N) ⊂ C4n and is a solution of
polynomial equations, one for every generator, which makes the determinant
of its image equal 1, and four for each relator. Hence R(N) is a complex
affine algebraic set. We are interested in conjugacy classes of representations.
SL(2, C) acts on R(N) by conjugation: for any A ∈ SL(2, C) and for any
representation ρ ∈ R(N) we can define A · ρ = iA ◦ ρ where iA is the inner
automorphism X 7→ AXA−1. This action is algebraic and the character
variety X(N) is defined to be the algebro-geometric quotient of this action.

There is a direct way to see the character variety. For each g ∈ G, define
Ig : R(N) → C by setting Ig(ρ) = trace(ρ(g)) for every representation
ρ ∈ R(N). Then Ig ∈ C[R(N)], the coordinate ring of R(N). Let the trace
ring T (G) be the sub-ring of C[R(N)] generated by all the functions Ig for
g ∈ G. The following is shown in [14] ] (see also [35]):
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Proposition 2.1. Suppose that the group G is generated by elements g1, . . . , gn.
Then the trace ring T (G) is generated by the elements IV , where V ranges
over all elements of the form gi1 . . . gik with 1 ≤ k ≤ n and 1 ≤ i1 < . . . <
ik ≤ n. (Note that this set of generators of T (G) has 2n − 1 elements.)

Using the above proposition we can describe the character variety explicitly.
Let N = 2n−1 and let V1, . . . , VN be words of the above form in some order.
Define a map t : R(N) → CN by t(ρ) = (IV1(ρ), . . . , IVN

(ρ)). Then X(N)
is parameterized by the image t(R(N)) ⊂ CN and will be identified with
the image t(R(N)). The map t : R(N)→ X(N) is algebraic and surjective
and it is shown in [14] that the image t(R(N)) is an algebraic set. A more
elementary proof of the fact that X(N) is an algebraic set is given in [21].
It is also shown in [21] that the trace ring T (G) defined above is generated
by the smaller set {IV } where V ∈ {gi : 1 ≤ i ≤ n} ∪ {gigj : 1 ≤ i < j ≤
n} ∪ {gigjgk : 1 ≤ i < j < k ≤ n}. This set contains n(n2 + 5)/6 elements.
The above definitions hold for any finitely generated group.

Character varieties are used to detect essential surfaces in 3-manifolds, as
described in [14]. An ideal point of a curve C in X(N) gives a valuation
on the function field F of C. This valuation gives an action of SL(2, F ) on
a tree via the Bass-Serre-Tits theory of trees. This action can be pulled
back to an action of π1(N) on a tree. The action of π1(N) on a tree can be
used to construct essential surfaces in N using a construction by Stallings-
Waldhausen.

Let N be a 3-manifold with torus boundary. Then we can study the repre-
sentations of π1(∂N) in SL(2, C) which extend to representations of π1(N) in
SL(2, C) . Let us fix a basis B = {L,M} of π1(∂N) = Z⊕Z. The inclusion
map π1(∂N) into π1(N) induces the restriction map r : X(N) → X(∂N).
Let ∆ ⊂ R(∂N) be the subvariety consisting of diagonal representations.
Let pB : ∆→ C∗ ×C∗ be defined as follows: if ρ is a representation defined
by

ρ(L) =

(

l 0
0 l−1

)

and ρ(M) =

(

m 0
0 m−1

)

then pB(ρ) = (l,m). It follows that pB is an isomorphism. Also the map
t : R(∂N)→ X(∂N) defined above restricts to a surjection t∆ : ∆→ X(∂N)
which is generically 2-to-1. We have:

X(N)

r





y

X(∂N)
t∆←−−−−
2:1

∆
pB−−−−→
1:1

C∗ × C∗
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Let X ′(N) be the union of irreducible components Y ′ of X(N) such that
the closure of r(Y ′) is 1-dimensional. For each component Z ′ of X ′(N) let

Z be the curve t−1
∆ (r(Y ′)) ⊂ ∆.

Definition 2.1. The curve DN is the union of curves Z as Z ′ varies over
all the components of X ′(N). The defining polynomial of the closure of the
image of DN in C∗ × C∗ is called the A-polynomial of N and denoted by
AN (l,m).

Remark 2.1.

1 The curve DN consists of the eigenvalues of the meridian and longi-
tude of representations of π1(∂N) in SL(2, C) which extend to π1(N)
and is also referred to as the eigenvalue variety of the 3-manifold N .

2 A defining polynomial vanishes exactly on the curve and has no re-
peated irreducible factors. Such a polynomial is unique up to multi-
plication by non-zero constants and powers of l and m.

3 AN (l,m) depends upon the choice of the basis B of π1(∂N). If
B1 = {LaM b, LcMd}, where det

(

a b
c d

)

= 1, is a different basis,

then AB1
N (l,m)

.
= AB

N (lamb, lcmb) where ′′ .
=′′ means equality up to

factors of m and l.
(4) AN (l,m)

.
= AN (1/l, 1/m) i.e.

(

−1 0
0 −1

)

is always a symmetry of
AN (l,m).

2.0.2. Definitions in the PSL(2, C) case. Let us define the PSL(2, C) counterparts
of the above. We will denote the PSL(2, C) counterparts by an over-line on
their respective SL(2, C) notation. The PSL(2, C) representation variety of
N is defined as R(N) = Hom(G,PSL(2, C)). Since PSL(2, C) ≃ SO(3, C) ⊂
SL(3, C), one can see as before that R(N) ⊂ C9n and is a complex affine al-
gebraic set. Similar to the SL(2, C) case, there is a PSL(2, C) action on R(N)
by conjugation and the PSL(2, C) character variety X(N) is defined to be
the algebro-geometric quotient of this action. There is a surjective quotient
map t : R(N) → X(N) which is constant on conjugacy classes of represen-
tations. Let us denote t(ρ) by χρ. The analogous result to Proposition 2.1
is proved in [3]. To describe it let m = n(n2 + 5)/6 and let {y1, . . . , ym} =
{gi : 1 ≤ i ≤ n} ∪ {gigj : 1 ≤ i < j ≤ n} ∪ {gigjgk : 1 ≤ i < j < k ≤ n}. Let
Fn denote the free group on the symbols x1, . . . , xn.

Proposition 2.2. Let ρ, ρ′ ∈ R(N). Choose matrices A1, . . . , An, B1, . . . , Bn ∈
SL(2, C) satisfying ρ(gi) = ±Ai and ρ′(gi) = ±Bi for each i. Define
ρ, ρ′ ∈ R(Fn) by requiring that ρ(xi) = Ai and ρ′(xi) = Bi for each i.
Let y1, . . . , ym be the n(n2 + 5)/6 elements of Fn associated to generators
x1, . . . , xn as described above. Then χρ = χρ′ if and only if there is a ho-
momorphism ǫ ∈ Hom(Fn, {±1}) for which trace(ρ′(yj)) = ǫ(yj)trace(ρ(yj))
for each j ∈ {1, . . . ,m}.
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The quotient map Φ : SL(2, C) → PSL(2, C) induces an algebraic map
Φ∗ : R(N) → R(N). This map is not onto in general. The condition
whether or not an element in R(N) lifts is well understood. See [3] for more
details and examples of N such that Φ∗ is not onto.

2.0.3. Definition of the PSL(2, C) A-polynomial. Let N be a 3-manifold with
torus boundary. Let us define the PSL(2, C) analog of the A-polynomial.
The inclusion of π1(∂N) into π1(N) induces the restriction map r : X(N)→
X(∂N). Let ∆ ⊂ R(∂N) be the subvariety consisting of diagonal represen-
tations. Let pB : ∆→ C∗×C∗ be defined as follows: if ρ is a representation
defined by

ρ(L) = ±
(

l 0
0 l−1

)

and ρ(M) = ±
(

m 0
0 m−1

)

then pB(ρ) = (l2,m2). It follows that pB is an isomorphism. The map
t : R(∂N)→ X(∂N) defined above restricts to a surjection t∆ : ∆→ X(∂N)
which is generically 2-to-1. We have:

X(N)

r





y

X(∂N)
t∆←−−−−
2:1

∆
pB−−−−→
1:1

C∗ × C∗

Let X
′
(N) be the union of irreducible components Y

′
of X(N) such that

the closure of r(Y
′
) is 1-dimensional. For each component Z

′
of X

′
(N) let

Z be the curve t
−1
∆ (r(Y

′
)) ⊂ ∆.

Definition 2.2. The curve DN is the union of curves Z as Z
′
varies over

all the components of X
′
(N). The defining polynomial of the closure of the

image of DN in C∗ × C∗ is called the PSL(2, C) A-polynomial of N and
denoted by AN (l,m).

Remark 2.2. A(l,m) defines the curve given by the squares of the eigenval-
ues of the meridian and longitude of representations in PSL(2, C) of π1(∂N)
which extend to π1(N).

We will be interested in the case when N is a complete, orientable, finite
volume one-cusped hyperbolic 3-manifold. The cusp on N is homeomor-
phic to T 2 × [0,∞) and N is homeomorphic to the interior of a 3-manifold
with torus boundary. Although N is non-compact by ∂N we will mean
the torus T 2 × 0. The universal cover of N is the hyperbolic 3-space H3.
The covering translations are isometries of H3 and hence lie in the group
PSL(2, C). This gives us a representation of π1(N) into PSL(2, C) which
is faithful and discrete. It is often referred to as the representation asso-
ciated to the hyperbolic structure of N and is denoted by ρ0. It follows
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from Mostow Rigidity that any other discrete faithful representation is con-
jugate to ρ0. It is a theorem of Thurston that ρ0 lifts to a representation ρ0

into SL(2, C). We will denote the irreducible component of X(N) contain-
ing the character of ρ0 by X0(N). Similarly we will denote the irreducible
component of R(N) containing ρ0 by R0(N) and the image t(R0(N)) in
X(N) by X0(N). The corresponding curves and factors of the SL(2, C) and
PSL(2, C) A-polynomials are also denoted by the subscript “0′′.

Let us make an observation about the relation between the SL(2, C) and
PSL(2, C) A0-polynomials. The projection π : SL(2, C) → PSL(2, C)
induces the map π : X0(N) → X0(N). Culler [12] showed that this map is
surjective. Let h : C× C→ C× C be defined by h(x, y) = (x2, y2). Then

X0(N)
r−−−−→ X(∂N)

p−1
B

◦t∆←−−−−
2:1

C∗ × C∗

π





y

π





y h





y

X0(N)
r−−−−→ X(∂N)

pB
−1◦t∆←−−−−−−
2:1

C∗ × C∗

Let D0 and D0 denote the curves defined by A0(l,m) and A0(l,m) respec-
tively. From the above diagram it follows that h(D0) = D0. So we get

h−1(D0) = D+,+
0 ∪D+,−

0 ∪D−,+
0 ∪D−,−

0

where D±,±
0 = curve given by A0(±l,±m). Hence

A0(l
2,m2)|A0(l,m)A0(l,−m)A0(−l,m)A0(−l,−m)

It is shown in [7] that a homomorphism ρ : π1(N)→ Z2 = {±1} ∈ C which
restricts non trivially to π1(∂N) induces an involution on the SL(2, C) A-
polynomial. For example in knot complements the Hurewicz homomorphism
composed with the quotient map from Z to Z2 maps the standard meridian
to −1 and standard longitude to 1 giving A0(l,m) = A0(l,−m). In this
case A0(l

2,m2) = A0(l,m)A0(−l,m). This relation or a similar one (e.g.
A0(l

2,m2) = A0(l,m)A0(−l,−m) for m11) holds for many manifolds in the
SnapPea’s [40] census of cusped hyperbolic 3-manifolds. For the manifold
m208 we get all the 4 factors. The curve X0(N) is also studied in [24].

3. Combinatorics of ideal triangulations

3.0.4. Ideal Tetrahedron. An ideal tetrahedron is a geodesic hyperbolic tetra-
hedron with all its vertices on the sphere at infinity of the hyperbolic 3-space.
Let H3 = {(x, y, z) ∈ R3 : z > 0} denote the upper-half space model of the
hyperbolic 3-space. The group of orientation preserving isometries of H3 is
identified with the group PSL(2, C). The sphere (or boundary) at infinity of
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H3 denoted by ∂H3 is the one point compactification of the x-y plane and
is identified with C ∪∞ = CP1. A horosphere centered at a point p ∈ ∂H3

is a hypersurface in H3 such that all geodesics with one endpoint at p are
orthogonal to it. The horosphere inherits an Euclidean metric from H3. For
instance, the horospheres at infinity in the upper half space model are the
planes {(x, y, z) : z = constant > 0}. The Euclidean metrics on the horo-
sphere obtained by different values of z are constant multiples of each other.
See [2] or [33] for more details.

Given an oriented ideal tetrahedron T in H3, the horosphere centered at
any of its vertices cuts out an Euclidean triangle which is well defined up
to similarity. Similarity classes of Euclidean triangles are parameterized by
the complex upper-half plane by arranging any Euclidean triangle to have
vertices 0, 1 and z, where z is in the upper-half plane, using Euclidean
similarities (i.e. rotations, translations and dilations). The numbers z, 1−
(1/z) and 1/(1 − z) give the same triangle depending on which vertices go
to 0 and 1. Moreover using the Z2 ⊕ Z2 symmetry of the ideal tetrahedron
we can see that opposite edges have the same dihedral angles and hence the
Euclidean triangles cut by horospheres centered at each vertex are similar.

Hence an oriented ideal tetrahedron is described completely up to (oriented)
hyperbolic isometry by a single complex number z in the upper half plane.
The complex number 1/z describes the same tetrahedron with opposite ori-
entation. To specify z uniquely we must pick an edge of T , the dihedral
angle at this edge will be arg(z). To each edge of T is associated one of the
numbers z, 1 − (1/z) and 1/(1 − z), called the modulus of the edge, with
opposite edges having the same modulus (see Figure 1). Once we fix an edge
of the tetrahedron we will write T = T (z). Observe that the modulus of the
edges are of the form ±zǫ1(1− z)ǫ2 where ǫi ∈ {−1, 0, 1}.

In the upper-half space model of H3, the vertices of an ideal tetrahedron
are extended complex numbers, say z1, z2, z3, z4. The modulus of the
edge with ideal vertices z1 and z2 can also be obtained as the cross-ratio
[z1 : z2 : z3 : z4] of the vertices, where the cross-ratio is defined as:

[z1 : z2 : z3 : z4] =
(z3 − z2)(z4 − z1)

(z3 − z1)(z4 − z2)

Hence the edge moduli are also referred to as cross-ratio parameters. An
ideal tetrahedron is said to be flat if the cross-ratio has imaginary part 0
and degenerate if two or more of its vertices are identified. In the later case
the cross-ratio parameters equal 0, 1 or ∞. In all other cases the ideal
tetrahedra is said to be non-degenerate.

The volume of an ideal tetrahedron is a function of its cross-ratio parameter.

vol(T (z)) = D2(z)
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Figure 1. (a) Euclidean triangle cut out by horosphere. (b)
Ideal tetrahedron with edge moduli

where D2(z) is the Bloch-Wigner dilogarithm defined as:

D2(z) = Imln2(z) + log|z|arg(z), z ∈ C− {0, 1}
where ln2(z) is the classical dilogarithm function defined as:

ln2(z) =

∞
∑

n=1

zn

n2
(|z| ≤ 1) (3.1)

3.0.5. Ideal Triangulations. An ideal triangulation of a manifold N is a cell
complex X formed by gluing tetrahedra along faces in which the link of
every vertex is a torus and N is homeomorphic to X−X(0). The vertices of
the ideal triangulation can be visualized to be at infinity with torus cusps.
Let N be a cusped hyperbolic 3-manifold with an ideal triangulation T with
n ideal tetrahedra ∆1, . . . ,∆n. N is homeomorphic to the interior of a
compact 3-manifold with torus boundary. Since N has Euler characteristic
zero the number of edges of N is equal to the number of tetrahedra. We
number the tetrahedra by an index i and the edges by an index j where
both i and j run from 1 to n. Assume that each ∆i is an hyperbolic ideal
tetrahedron and let ∆i = ∆(zi).

At every edge of N the tetrahedra abutting the edge close up as one goes
around the edge. Since the edge moduli at any edge look like ±zǫ1(1− z)ǫ2

for ǫi ∈ {−1, 0, 1}, the edge moduli of these tetrahedra satisfy a gluing
condition of the form

n
∏

i=1

zr′ji(1− z)r
′′

ji = ±1 (j = 1, 2, . . . n) (3.2)

These are called the gluing equations. The exponents r′ij and r′′ij can be
integers other than ±1 as more than one edge of a single tetrahedron can be
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identified. Any solution to the above equations ensures that the hyperbolic
metric is well defined around an edge and hence gives a hyperbolic metric
on N which is in general incomplete.

Each cusp of N is homeomorphic to T 2 × [0,∞). The cusp torus inherits
a triangulation by triangles cut out by the horoshperes centered at vertices
of the ideal tetrahedra. Since the Euclidean metric on the horospheres is
defined only up to scale, these triangles are well defined only up to Eu-
clidean similarities. Hence the cusp torus gets a similarity structure from
its triangulation. This similarity structure can be realized as a holonomy
representation of π1(∂N) into the group of Euclidean similarities which is
isomorphic to Aff(C) = {az + b : a 6= 0, b ∈ C}. If we fix a basis {Lk, Mk}
of the k-th cusp torus then the derivative of the image of the basis in the
holonomy representation, which we denote by lk and mk, can be written in
terms of the cross-ratio parameters in the following way:

lk = ±∏n
i=1 zl′

ki(1− z)l
′′

ki

mk = ±∏n
i=1 zm′

ki(1− z)m
′′

ki k = 1, . . . h (3.3)

For N to be complete the similarity structure on every cusp should be Eu-
clidean. This means that mk = lk = 1 at every cusp. This condition gives
two more equations at every cusp called the completeness equations. A so-
lution z0 = (z0

1 , . . . , z0
n) to Equations 3.2 to 3.3 with the condition that each

z0
i is in the upper-half plane or each z0

i is in the lower half plane, gives a
complete, finite volume hyperbolic structure on N . We will refer to the pa-
rameter for the complete hyperbolic structure on N to mean the parameter
z0 with each zi in the upper-half plane. We call an ideal triangulation geo-
metric if the gluing and completeness equations have a solution with each zi

in the upper half plane. A geometric ideal triangulation gives a hyperbolic
structure on N . In this paper by an ideal triangulation we mean a geometric
ideal triangulation. It follows from Mostow rigidity that the set of solutions
to the above equations which give the parameters for the complete structure
is a discrete set.

Let

R =







r′11 . . . r′1n r′′11 . . . r′′1n
...

...
...

...
r′n1 . . . r′nn r′′n1 . . . r′′nn






(3.4)

be the n × 2n matrix consisting of the powers r′ji, r′′ji. This encodes the
gluing conditions. Similarly we have a h × 2n matrix L consisting of the
powers l′ki, l′′ki and h×2n matrix M consisting of the powers m′

ki, m′′
ki which

encode the completeness equations. The matrix

U =





L
M
R





(n+2h,2n)

(3.5)



A-polynomial and Bloch invariants of hyperbolic 3-manifolds 13

is called the gluing matrix for the manifold N . See [31] for more details on
the combinatorics of triangulation and properties of the gluing matrix U .

3.0.6. Parameter space and Holonomies. Let N be a hyperbolic 3-manifold
with an ideal triangulation T . Let z0 = (z0

i , . . . , z0
n) be the parameter for

the complete hyperbolic structure on N .

Definition 3.1. Let

P T (N) = {(z, t) ∈ Cn ×C : z satisfies Equation 3.2 and tΠn
i=1zi(1− zi) = 1}

We call P T (N) the parameter space of N with respect to the triangulation
T . Let P T

0 (N) denote the component of P (N) which contains z0.

Remark 3.1.

(1) P T (N) can be seen as the space of all hyperbolic structures on N
induced by the triangulation T .

(2) We drop the superscript T when the context is clear. We will show
in Section 3 that P T

0 (N) is independent of the ideal triangulation.
(3) The coordinate t ensures that the parameters do not degenerate to 0

or 1. We will drop the coordinate t in later discussions. z ∈ P (N)
will mean (z, t) with t defined with the above equation.

For z ∈ P (N), let N(z) denote the manifold obtained from gluing n tetra-
hedra with parameters z1, . . . , zn and with the same gluing pattern as N .
N has a hyperbolic metric which is in general incomplete and is complete
when z = z0. The volume of N is well defined and is the sum of the signed
volumes of the individual tetrahedra, the sign being positive if zi is in the
upper-half space and negative if zi is in the lower-half space. It is shown in
[31] and [38] that P0(N) is smooth at the point z0 and has dimension h. Let
Def(N) be a small neighborhood of z0 contained in P0(N) and call it the
deformation space. Also let

Φ : Def(N)→ Ch, be defined by Φ(z) = (log(m1(z)), . . . , log(mh(z)))

Φ maps Def(N) ⊂ P0(N) biholomorphically to a neighborhood of 0 ∈ Ch.
Let D be a neighborhood of 0 ∈ Ch onto which Def(N) is mapped by Φ. For
z ∈ Def(N), let N(z) denote the completion of N(z) with the hyperbolic
metric given by the parameter value z. N(z) differs from N topologically by
the addition of a set γk of limit points at the k-th cusp. γk can be empty, a
point or a circle. When γk is empty the cusp is left unsurgered, when γk is a
point N(z) is not a manifold and when γk is a circle N(z) is homeomorphic
to a manifold obtained by doing a topological Dehn surgery on the k-th
cusp. In the last case either the hyperbolic metric is singular along γk or
N(z) is a complete hyperbolic 3-manifold.

In case N(z) is a complete hyperbolic 3-manifold then there exist co-prime
integers pk and qk such that pk log(mk(z)) + qk log(lk(z)) = 2πi and N(z) is
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obtained by (pk, qk)-Dehn surgery on the k-th cusp of N . We let (pk, qk) =∞
if the cusp is left unsurgered. m(z) = l(z) = 1 if the cusp is left unsurgered
and m(z)pl(z)q = 1 if the cusp is surgered along a (p, q) curve on the k-th
cusp torus on N .

Let us define a degree one ideal triangulation for a hyperbolic 3-manifold.
Gluing finitely many tetrahedra by identifying all the 2-faces in pairs gives
a cellular complex X which is a manifold except possibly at the vertices. If
the complement of the “bad” points is oriented then X is called a geometric
3-cycle. In this case the complement X −X(0) of the vertices is an oriented
manifold. Let N be a hyperbolic 3-manifold. A degree one ideal triangula-
tion of N consists of a geometric 3-cycle X and a map f : X −X(0) → N
such that:

(1) f is degree one almost everywhere in N.
(2) For each tetrahedron S of X there is a map fS to an ideal tetrahedron

in H3 ∪CP1, bijective on vertices, such that f |S−S(0) : S−S(0) → N is

the composition π◦fS|S−S(0) , where π is the projection π : H3 → N .

Degree one ideal triangulations are much more general than what we will
need. If M is a hyperbolic 3-manifold obtained from Dehn surgery on some of
the cusps of a cusped manifold N then the ideal triangulation of N deforms
to a degree one ideal triangulation of M .

Let N be a one-cusped hyperbolic 3-manifold ideally triangulated with n
tetrahedra. Let l = l1 and m = m1. Define

Hol : P (N)→ C× C, by Hol(z) = (l(z),m(z))

Hol (for holonomy) is a rational function on P (N). Let Z = ∪Yi where Yi

is a component of P (N) whose closure of the image under Hol is a curve in
C× C. We define

Definition 3.2. The image Hol(Z) is called the Holonomy variety with re-
spect to the triangulation T and denoted by HT (N). The defining polynomial
of the closure of HT (N) is denoted by HT (l,m). Let HT

0 (N) (respectively
HT

0 (l,m)) denote the image Hol(P T
0 (N)) (respectively factor of HT (l,m)).

Remark 3.2.

(1) We drop the superscript T when the context is clear. We will show
in Section 3 that HT

0 (N) is independent of the ideal triangulation.
(2) H(l,m)

.
= H(1/l, 1/m) i.e.

(

−1 0
0 −1

)

is always a symmetry of H(l,m).

Let us describe a generalization of H(l,m) to more than one cusps. Let N be
a hyperbolic 3-manifold with h > 1 cusps. We can define the holonomy map
Hol : P (N) → C2h by Hol(z) = (l1(z),m1(z), . . . , lh(z),mh(z)). We know
that P0(N) has dimension h. Let Qk ⊂ P0(N) be the subset consisting of
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parameters corresponding to leaving all but the k-th cusp unsurgered. Qk is
obtained by adding h − 1 completeness equations, one for each unsurgered
cusp, to the gluing equations. Hence Qk is a curve in P0(N). Let pk :
C2h → C2 be the map pk(z1, w1, . . . , zh, wh) = (zk, wk). Then pk ◦ Hol(Qk)
is a curve in C2. We call this curve the k-th Holonomy variety of N and
denote it by Hk

0 (N). The defining polynomial of the closure of Hk
0 (N) is

denoted by Hk
0 (l,m).

4. The developing map

In this section we define a map D : P (N)→ X(N). Using this map we show
that the polynomial H(l,m) defined in Section 2 divides the PSL(2, C) A-
polynomial. Furthermore we show that the the curves P0(N), H0(N) and
the polynomial H0(l,m) is independent of the ideal triangulation.

4.0.7. Construction of the developing map D. Let N be a hyperbolic 3-
manifold with an ideal triangulation T with n tetrahedra σ1, . . . , σn. Let
z0 = (z0

1 , . . . , z0
n) be the parameter for the complete hyperbolic structure

on N . Fix a base point x ∈ N such that x ∈ interior (σ1). Let Ñ be

the universal cover of N and let p : Ñ → N be the covering map. The
triangulation T lifts to a triangulation T̃ on Ñ . Fix a base point x̃ ∈ Ñ
such that p(x̃) = x and fix a lift σ̃1 of σ1 which contains x̃. The triangulation

T̃ is π1(N)-equivariant i.e. it is invariant under the π1(N) action on Ñ and
if ỹ = g · x̃ for some g ∈ π1(N) then ỹ ∈ interior g(σ̃1).

For any parameter z = (z1, . . . , zn) ∈ P (N) we construct a map φ : Ñ → H3

inductively as follows: Send σ̃1 to the ideal tetrahedra with vertices z1, 1, ∞
and 0. Observe that [z1 : 1 :∞ : 0] = z1 and hence the cross-ratio parameter

of φ(σ̃1) is z1. Assume φ is defined for a triangulated subset S of Ñ . Let
σ̃ be a lift of σi for some i for which σ̃ has a face in common with S.
Let a, b, c, d be the vertices of σ̃ and σ̃ ∩ S equal the face of σ̃ with
vertices a, b and c. Define φ(σ̃) to be the unique hyperbolic tetrahedra
with vertices φ|S(a), φ|S(b), φ|S(c) and w such that the cross-ratio [φ|S(a) :
φ|S(b) : φ|S(c) : w] = zi. Observe that φ(σ̃) is well defined even if all the
four vertices are in S as the zi’s satisfy the gluing equations. The map
φ is well-defined and continuous and is called the developing map for the
hyperbolic structure (in general incomplete) induced on N by the parameter
z = (z1, . . . , zn).

Let us see how the map φ changes if we change the image of σ̃1. Let φ′

be the developing map defined using another choice of the image of σ̃1.
Let φ′(σ̃1) = ∆′ and let a, b, c and d be the vertices of ∆′ such that
[a : b : c : d] = z1. Since ∆′ and ∆ have the same cross-ratio there is a unique
hyperbolic isometry α such that α(∆) = ∆′. Hence φ′(σ̃1) = α(φ(σ̃1)). Since
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φ and φ′ are defined inductively we get:

φ′(σ̃) = α(φ(σ̃)) (4.1)

for any σ̃ ∈ T̃ and hence φ′(x) = α(φ(x)) for all x ∈ Ñ .

The map φ gives rise to the representation ρ : π1(N) → PSL(2, C) as
follows: For any g ∈ π1(N) let σ̃g = g · σ̃1. By definition of φ, the cross-ratio
parameters of φ(σ̃1) and φ(σ̃g) are the same and hence there is a unique
orientation preserving hyperbolic isometry τ which takes φ(σ̃1) to φ(σ̃g).
Define ρ(g) = τ . The relation between φ and ρ is:

φ(g · σ̃1) = ρ(g)(φ(σ̃1)) (4.2)

Using 4.1 it is clear that this gives a representation of π1(N) into PSL(2, C).
If ρ′ is the representation obtained from φ′ by changing the image of σ̃1 then
using 4.1 and 4.2 we can see that:

ρ(g) = α−1ρ′(g)α for all g ∈ π1(N) (4.3)

Let φ′ be the developing map defined using a different base point, say x̃′ ∈ σ̃i,
where σ̃i is a lift of σi and φ′(σ̃i) is the ideal tetrahedron with vertices
zi, 1, ∞ and 0. Since φ(σ̃1) and φ′(σ̃i) have 3-vertices in common, the
induced representations ρ and ρ′ are the same.

Hence a parameter z ∈ P (N) gives a conjugacy class of representations in
PSL(2, C) and hence a well defined element of X(N). This representation
is called the holonomy representation associated to the hyperbolic structure
on N induced the parameter z. Let φz be the developing map obtained
as above starting with the image of σ̃1 to be the tetrahedra with vertices
z1, 1, ∞ and 0 and let ρ

z
denote the induced holonomy representation. Let

D : P (N)→ X(N) be defined by D(z) = χρ
z

.

4.0.8. Properties of D. D is Algebraic: We will show that D is an alge-
braic map. Let D′ : P (N)→ R(N) be the map defined by D(z) = ρ

z
. Since

D = D′ ◦ t and t is algebraic it is enough to show that the D′ is algebraic.
The fundamental group π1(N) of N is generated by face pairings of some

fundamental domain R ⊂ Ñ which is triangulated in T̃ . Let σ̃1, . . . , σ̃n be
the tetrahedra which make up R. Any face pairing of R is a composition of
a face pairings of σ̃i and their inverses. Note that the face pairing of each σ̃i

may or may not belong to π1(N). The image ρ
z
(π1(N)) is generated by the

face pairings of the tetrahedra ∆i with vertices 0, 1, ∞ and zi for 1 ≤ i ≤ n
and their inverses. All the face pairings of ∆i are generated by the following
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elements of PSL(2, C):

±
(√

zi 0
0 1/

√
zi

)

, ±
(√

zi − 1 1/
√

zi − 1
0 1/

√
zi − 1

)

, ±





√

zi

1−zi
0

√

zi

1−zi

√

1−zi

zi



 ,

±
(

0 1
−1 1

)

, ±
(

−i i
0 i

)

(4.4)

Hence the image of the representation ρ
z
is in the subgroup of PSL(2, C) generated

by products of the above matrices and their inverses. Since PSL(2, C) acts
on C3 via the action on 2 × 2 traceless matrices by conjugation, we get a
faithful representation Θ : PSL(2, C) → SL(3, C) defined as:

Θ(±
(

a b
c d

)

) =





ad + bc −ac bd
−2ab a2 −b2

2cd −c2 d2



 (4.5)

It is easy to see that det(Θ(±A)) = 1 for all ±A ∈ PSL(2, C) and the image
of matrices in 4.4 are matrices with entries as rational functions of zi’s.
Hence the map D′ is algebraic and hence D is algebraic.

D is 2:1: In general D is not onto. We show that D is generically 2 : 1
onto its image. Lifting representations to give geometric triangulations has
been studied in [7] (Section 4.5) and also in [30] (Section 8). Consider the

triangulated fundamental domain R ⊂ Ñ considered above and let v1, . . . vs

denote its vertices. Since N has one cusp, π1(N) acts transitively on the

vertices of the triangulation T̃ of Ñ . Moreover since the triangulation T of
N is an ideal triangulation, the only vertex in N is at infinity and hence
π1(∂N) has a fixes a vertex at infinity in Ñ . Let v1 be a vertex of σ̃1 which
always maps to ∞ under φz for all z ∈ P (N). Let g1, . . . , gs ∈ π1(N) be
such that gj(v1) = vj for all 1 ≤ j ≤ s. To each tetrahedron σ̃i of R we
can associate 4 group elements such that gij (v1) = vij for j = 1, . . . 4 where
vi1, . . . , vi4 are the vertices of σ̃i. For any z ∈ P (N) the cross ratio parameter
of φz(σ̃i) is

zi = [ρz(gi1)(∞) : ρz(gi2)(∞) : ρ(gi3)(∞) : ρ(gi4)(∞)] (4.6)

Let χ ∈ X(N) be a character of a representation ρ ∈ R(N). If the image
ρ(π1(∂N)) 6= Z2 ⊕ Z2 then ρ(π1(∂N)) has a fixed point on the sphere at
infinity i.e. as a subgroup of PSL(2, C), ρ(π1(∂N)) has at least one common
eigenvector. When ρ = ρ0, the representation associated to the hyperbolic
structure on N , ρ(π1(∂N)) consists of parabolic isometries and has a single
fixed point on the sphere at infinity. In general ρ(π1(∂N)) consists of hyper-
bolic or elliptic isometries and has two fixed points on the sphere at infinity.
We can always conjugate a representation so that one of the fixed points of
ρ(π1(∂N)) is the point ∞. Starting with a character χ ∈ X(N) let ρ be a
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representation such that χρ = χ and ρ(π1(∂N)) fixes ∞. The fundamen-
tal domain can be reconstructed using the vertices ρ(g1)(∞), . . . ρ(gs)(∞).
Similarly the cross ratio parameters of each σi are obtained from Equation
4.6 by substituting ρ in place of ρz. In case two or more of the vertices
coincide the parameters degenerate, i.e. become 0, 1 or ∞, the pull back
is not defined. Since the gi’s and π1(∂N) generate π1(N), the image under
D of the pull back of χ goes to itself. Since generically ρ(π1(∂N)) has two
fixed points the map D is generically 2 : 1. Observe that the pull back is
defined for every element in the image of D.

Since the condition that two or more vertices coincide gives an additional
equation, the characters on the component X0(N) for which the pull back is
not defined is 0-dimensional. Hence the image D(P0(N)) consists of almost
all the characters on X0(N).

Holonomies of cusp torus: Let T be the cusp torus of N . Then T inherits
a triangulation by similarity classes of Euclidean triangles cut off by the
horospheres centered at the vertices of the ideal tetrahedra. This gives a
similarity structure on T which is Euclidean if the ideal triangulation gives
the complete hyperbolic structure on N . The similarity structure gives
a holonomy representation ξ : π1(T ) → Sim(E2) = Aff(C) = {az + b :
a, b ∈ C, a 6= 0}. Euclidean similarities can be identified with a subset of
PSL(2, C) via the identification:

az + b 7−→ ±
(√

a b/
√

a
0 1/

√
a

)

Fix a basis B = {L,M} of π1(T ) ⊂ π1(N). Let ξ(L) = lz + b1 and ξ(M) =
mz + b2. Then the holonomy representations of L and M are:

ρ(L) = ±
(√

l b1/
√

l

0 1/
√

l

)

and ρ(M) = ±
(√

m b2/
√

m
0 1/

√
m

)

Hence the square of the eigenvalues of the meridian and longitude of the ho-
lonomy representation ρz induced by the developing maps to the derivatives
of the representation of the meridian and longitude in Sim(E2) = Aff(C). It
is proved in [38] (see also [31] Lemma 2.1) that this derivative is the number
l and m from Equations 3.3. Hence we have shown:

Theorem 4.1. The map D : P (N)→ X(N) defined by D(z) = χρ
z

is alge-
braic, generically 2 : 1 onto its image and the following diagram commutes:
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X(N)
D←−−−−
2:1

P (N)

r





y
Hol





y

X(∂N)
p−1

B
◦t∆←−−−−

2:1
C∗ × C∗

Hence H(l,m) divides the PSL(2, C) A-polynomial A(l,m).

The above diagram restricted to P0(N) gives that the curve H0(N) =
pB(D0). Hence we have:

Theorem 4.2. H0(l,m) = A(l,m) and hence the curve H0(N) and its
polynomial are independent of the ideal triangulation of N .

In [16], Dunfield has shown that the map r : X0(N)→ X(∂N) is a birational
isomorphism onto its image. Hence from the above diagram we have

Theorem 4.3. Hol : P0(N) → C × C is a birational isomorphism onto its
image and hence the curve P0(N) is birational to the curve H0(N) and is
independent of the triangulation of N .

5. Boundary slopes

One of the striking properties of the A-polynomial is that the slopes of the
sides of the Newton polygon of the A-polynomial are boundary slopes of
essential surfaces in the manifold. We give a similar relationship for the
PSL(2, C) A-polynomial along the same lines using the PSL(2, C) character
variety theory developed in [3]. Most of the proofs in Section 3 of [7] go
through with minor modifications.

5.0.9. Ideal points of DN . Let N be a one-cusped hyperbolic 3-manifold.
Fix a basis B = {L,M} of π1(∂N) = H1(∂N ; Z). If S is an incompressible
surface with non-empty boundary in N then ∂S is a family of homolo-
gous simple closed curves on ∂N and hence determines a homology class
in H1(∂N ; Z) given by pM + qL. The boundary slope of S is the extended
rational number p/q. Fix a curve C ⊂ X(N). Then it is shown in [3] (
Section 4) that there exists a finite extension F of the function field C(C)
of C and a tautological representation

P : π1(N)→ PSL(2, F )

.
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Proposition 5.1. Let Y be an irreducible component of DN . There exists
a finite extension F of the function field C(Y ) of Y and a representation
P : π1N → PSL(2, F ) such that

P (L) = ±
(

l 0
0 l−1

)

and P (M) = ±
(

m 0
0 m−1

)

where l and m are regarded as elements of C[Y ].

Proof: By the construction of the curve DN there is a curve Y ∂N ⊂ X(∂N)

and an irreducible component Y
′ ⊂ X(N) such that t∆(Y ) = r(Y

′
) = Y ∂N .

By Section 4 of [3] there exists a finite extension F1 of C(Y
′
) and a tautolog-

ical representation P1 : π1(N) → PSL(2, F1). Since the maps r and t∆ are

surjective, the function fields C(Y
′
) and C(Y ) are finite extensions of the

function field C(Y ∂N ). Hence we can find a common finite extension, call
it F , of F1 and C(Y ). We may regard P1 as a representation of π1(N) in
PSL(2, F ). Since F contains C(Y ), it contains l and m. Since l and m are
eigenvalues of commuting matrices P1(L) and P1(M), the representation P1

is conjugate in GL(2, F ) to a representation P satisfying the conclusion of
the proposition. �

Proposition 5.2. To each ideal point x of DN there corresponds an incom-
pressible surface with non-empty boundary in N . If ν is the valuation on
C(DN )associated to x then the boundary slope of this incompressible surface
is −ν(l)/ν(m).

Proof: Let Y be an irreducible component of DN and ν be the discrete
valuation induced on C(Y ) by x. Let F be the finite extention of C(Y )
and P be the representation obtained using Proposition 5.1. Since F is
a finite extention of C(Y ), the discrete valuation ν extends to a discrete
valuation ν ′ of F with the property that ν ′(f) = Nν(f) for some N and for
all f ∈ C(Y ). As shown in [14] and [3] we obtain an action of π1(N) on
the tree of PSL(2, F ) determined by the representation P . Since l and m
are the coordinates on DN and x is an ideal point, ν(l) or ν(m) is non-zero.
This means that this action is non-trivial and Theorem 4.3 of [3] implies
that N has a splitting along an essential surface with nonempty boundary.
Morever Proposition 4.7 of [3] implies that the boundary of this essential
surface is the unique boundary slope r such that ν ′(r) = 0 i.e. if r = p/q
then the element γ = lqmp ∈ π1(∂N) ⊂ π1(N) satisfies ν ′(γ) = 0. Since ν ′

is a discrete valuation

ν ′(γ) = ν ′(lqmp) = qν ′(l) + pν ′(m) = 0

One solution to this is p = ν ′(l) and q = −ν ′(m) and hence the slope
r = −ν ′(l)/ν ′(m) = −ν(l)/ν(m), since ν ′(f) = Nν(f) for f ∈ C(Y ). Propo-
sition 4.7 of [3] says that this is the unique slope with this property. This
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proves our proposition. �

5.0.10. Newton polygon and Puiseaux parametrizations. The Newton poly-
gon of a polynomial F (x, y) =

∑

amnxmyn is the convex hull of the points
(m,n) ∈ Z× Z where amn 6= 0 and is denoted by NF . To relate the bound-
ary slopes of essential surfaces to slopes of sides of the Newton Polygon of
the A(l,m) we find valuations which arise from the slopes of the sides of
Newton polygons. This is done using Puiseaux parametrization.

Let F (x, y) =
∑

m,n amnxmyn = 0 be the defining polynomial of an irre-

ducible plane curve C ⊂ C × C. Let S be a side of NF having slope −p/q
with p, q > 0 and lying below NF . Let S lie on the line with equation
px+ qy = d. Assume that F has no factors of x or y. Consider the following
part of F :

G1(x, y) =
∑

pm+qn=d

amnxmyn (5.1)

Substituting x = xp
1 and y = txq

1 in G1 we get:
∑

pm+qn=d

amnxpm
1 tnxnq

1 =
∑

pm+qn=d

amnxpm+nq
1 tn = xd

1

∑

pm+qn=d

amntn

If F (x, y) = 0 then G1(x, y) = 0 and this happens when t is substituted by
a root a0 6= 0 of the polynomial

∑

pm+qn=d amntn. Hence y0 = a0x
q
1 can

be seen as a first approximation to solving y in terms of x for the implicit
equation F = 0. One can iterate this process by substituting x = xp

1 and
y = xq

1(a0 + y1) in F to get

F (xp
1, x

q
1(a0 + y1)) =

∑

m,n

amnxpm+qn
1 (a0 + y1)

n = xd
1F1(x1, y1)

since S is below NF and pm + qn = d is lowest among all m and n with
amn 6= 0. Now we can repeat this recursively with F substituted by F1.
It is a classical result that this gives a power series expansion of y which
converges (see [4] or [22]). Hence we get a parametrization of the curve C
of the form:

x(t) = tp and y(t) = tq
∞
∑

n=0

bntn

with b0 6= 0. Such a parametrization is called a Puiseaux parametrization.

A Puiseaux parametrization gives us a valuation on the function field C(C) of
the curve C as follows. Given a rational function k(x, y) which is non-zero in
C(C), one defines the order of k to be the integer n such that k((x(t), y(t)) =
tnz(t) where z(t) is a power series with a non-zero constant term. It is shown
in [22] that the order is well defined and the induced function is a discrete
valuation on C(C). If this valuation is ν then ν(x) = p and ν(y) = q where
x and y are seen as elements of C(C).
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In order to handle the case of the sides of NF which have non-negative slope
or a side which lies above NF we change coordinates appropriately. See the
proof of Proposition 3.3 of [7] for more details. From the above discussion
we have

Proposition 5.3. Let C be a plane curve with defining polynomial F (x, y).
Assume F is not divisible by x or y. If the Newton polygon of F has a
side of slope p/q then there is a valuation v on the function field of some
irreducible component of C such that p/q = −ν(x)/ν(y).

Combining Propositions 5.2 and 5.3 we have

Theorem 5.1. The slopes of the sides of the Newton polygon of A(l,m)
are boundary slopes of incompressible surfaces in N which correspond to the
ideal points of DN .

Using Theorem 4.1 we immediately get:

Theorem 5.2. The slopes of the sides of the Newton polygon of H(l,m)
are boundary slopes of incompressible surfaces in N which correspond to the
ideal points of H(N).

6. Computations and examples

In this section we will discuss the computational aspect of H(l,m) and give
examples.

6.0.11. Computation of H(l,m). The computation of H(l,m) is reduced to
classical elimination theory once the gluing and completeness equations are
set up. Suppose we are given an ideal triangulation of a cusped hyperbolic
3-manifold N . Then we can compute the gluing and completeness equa-
tions using the triangulation data. Jeff Weeks’ program SnapPea [40] reads
the triangulation data of a manifold, computes the gluing and completeness
equations and computes the hyperbolic structure simply by solving these
equations numerically. Using the numerical solution SnapPea computes hy-
perbolic invariants like volume, Chern-Simons invariant, length of shortest
geodesic and topological invariants like the fundamental group, first homol-
ogy group, cyclic covers. Although experimental SnapPea is very accurate
and experimentally reliable. SnapPea has been used extensively to study
examples of hyperbolic 3-manifolds and test conjectures. A manifold can be
entered into SnapPea in many ways. A knot or a link complement can be
entered by drawing a knot or link projection. SnapPea includes a census of
cusped hyperbolic 3-manifolds which can be triangulated by 7 or less ideal
tetrahedra [6] which is usually referred to as SnapPea’s cusped census. A
manifold from the census can be loaded into SnapPea. Punctured torus
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bundles can be loaded into SnapPea using inbuilt functions. Once loaded a
manifold can be saved as a data file. The program Snap [11] uses SnapPea
data to compute the hyperbolic structure to very high precision and uses a
number theory package called PARI-GP [1] to compute the the hyperbolic
structure using exact arithmetic. Snap also computes arithmetic invariants
such as the trace field, invariant trace field, quaternion algebras and Bloch
invariants. Snap reads manifold data files from SnapPea and hence can be
used to study all the manifolds which SnapPea can study. Snap includes
SnapPea’s cusped census and the knot census up to 16 crossings. Once a
hyperbolic 3-manifold is loaded into Snap the gluing matrix can be obtained
using the command “print gluing equations”. Once we have the gluing ma-
trix it is easy to set up the gluing equations. Once the gluing equations are
set up we can use Groebner bases or resultant theory to obtain the polyno-
mial. In our computations we have used various programs which compute
Groebner bases like Macaulay and Magma.

Remark 6.1. The census manifolds have the following notation: “m” de-
notes a manifold with 5 or less tetrahedra, “s” denotes a manifold with
exactly 6 tetrahedra and “v” denotes a manifold with exactly 7 tetrahedra.

6.0.12. Examples. Example 1- m004 also known as the figure-8 knot

complement: The gluing matrix obtained from Snap is:








1 0 0 1 0
0 −2 0 4 2
2 −1 −1 2 0
−2 1 1 −2 0









Each row gives first the powers of z1, . . . , zn, then the power of 1−z1, . . . , 1−
zn, and finally the power of eπi. The first row is the gluing equation for the
meridian, the second row for the longitude and the remaining n rows are
the for edges. Neumann and Zagier [31] proved that you only need n − 1
of the n edge equations. In the above case we have 2 tetrahedra. Let the
parameters be z1 and z2. The equations look like:

z1(1− z2) = m

(1− z2)
4

z2
2

= l

z2
1(1− z2)

2

(1− z1)z2
= 1

z2(1− z1)

z2
1(1− z2)2

= 1

We first clear denominators in the above equations. In order to eliminate z1

and z2 from the above equations we can proceed in two ways. Either (1) take
resultants or (2) we can form the ideal I generated by the above 4 equations
(with cleared denominators and equated to 0) in the ring Z[z1, z2, l,m] and
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compute a Grobner basis with respect to the ordering which eliminates the
first 2 variables. It is often convenient to add in another variable t and the
extra equation tz1z2(1 − z1)(1 − z2) = 1. This ensures that none of the
parameters degenerate (i.e. equal 0 or 1). We give the p × q coefficient
matrix Q from which we can retrieve the polynomial as:

(

1 m m2 . . . mp−1
)

Q
(

1 l l2 . . . lq−1
)T

The coefficient matrix also gives the shape of the Newton polygon from which
we can read the boundary slopes of essential surfaces. For the figure-8 knot
complement we get only one factor:





























1
−2
−3
2

−1 6 −1
2
−3
−2
1





























Example 2- m009:
































−1
4

1 −8 2
−4

4
−2 8 −1

−4
1

































Example 3- m129 or the Whitehead link complement: We can com-
pute the polynomial at each cusp as indicated in Section 2. For the White-
head link complement we get the same polynomial at both the cusps.





















−1
8

2 −16 1
−8 8

−1 16 −2
−8
1





















Example 4- m130:
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−1
9 −3 3

1 −40 33 −37 10 −3
−2 87 −98 132 −61 32 −7 1

1 −13 −44 −40 −22 −7 −1
1 7 22 40 44 13 −1

−1 7 −32 61 −132 98 −87 2
3 −10 37 −33 40 −1

−3 3 −9
1

































Example 5- m137: We get only one factor. This manifold is studied in
[17].



















































1
−5

−2 −6 −2
2 13 −10 −1

1 4 30 −2 −2
2 −10 12 24 −3
3 −24 −29 30 −1
1 −2 −48 −2 1
−1 30 −29 −24 3
−3 24 12 −10 2
−2 −2 30 4 1
−1 −10 13 2

−2 −6 −2
−5
1



















































Example 6- s773:

























−1
2 8 −3

−1 −8 6 −40 24 −2
−3 40 −24 4 8 8 2
−2 −8 −8 −4 24 −40 3
2 −24 40 −6 8 1
3 −8 −2
1
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7. Fundamental Identity

We will prove the identity which will be our fundamental tool in working
with the variation of Bloch invariant.

7.0.13. Prerequisites. We recall some results from [31] and prove an identi-
ties which follows easily. Let N be a hyperbolic 3-manifold with h cusps.
Let

U =





L
M
R





(n+2h,2n)

be the gluing matrix for a triangulation T of N . Let C denote the matrix
C =

(

L
M

)

so U =
(

C
R

)

. Let J2m denote the symplectic matrix

J2m =

(

0 Im

−Im 0

)

On R2n we have the symplectic form < x,y >= 1
2xJ2ny

t. The following
theorem is proved in [31] (Theorem 2.2):

Theorem 7.1. UJ2nU t = 2

(

J2h 0
0 0

)

.

If we denote the row space of a matrix A by [A], the above theorem implies
that [U ] is orthogonal w.r.t <,> to [R] and the rows of C form a symplectic
basis of [C]. It is also shown in [31] that

Proposition 7.1. Rank R = n − h and rank U = n + h. Moreover if ⊥
denotes the orthogonal complement with respect to <,> then [U ]⊥ = [R].

Corollary 7.1. Suppose x,y ∈ Z2n satisfy Rxt = Ryt = 0. Then 2xJ2ny
t =

xCtJ2hCyt.

Proof: Since 0 = Rxt = RJ2n(xJ2n)t, it follows from Proposition 7.1 that
the vector xJ2n ∈ [R]⊥ = [U ]. Let xJ2n = zU and yJ2n = wU , where z =
(z1

′, . . . , z′h, z′′1 , . . . , z′′h, z1, . . . , zn) and w = (w1
′, . . . , w′

h, w′′
1 , . . . , w′′

h, w1, . . . , wn).
This means that

xJ2n =
h

∑

i=1

z′iLi +
h

∑

i=1

z′′i Mi +
h

∑

i=1

zjRj

yJ2n =

h
∑

i=1

w′
iLi +

h
∑

i=1

w′′
i Mi +

h
∑

i=1

wjRj

By Theorem 7.1 we have

< xJ2n, Lk >=<

h
∑

i=1

z′iLi +

h
∑

i=1

z′′i Mi +

h
∑

i=1

zjRj , Lk >=< z′′kMk, Lk >= −z′′k
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< xJ2n,Mk >=<

h
∑

i=1

z′iLi +

h
∑

i=1

z′′i Mi +

h
∑

i=1

zjRj,Mk >=< z′kLk,Mk >= z′k

and similarly < yJ2n, Lk >= −w′′
k and < yJ2n,Mk >= w′

k. For a,b ǫ R2n,
abt = −aJ2

2nb
t = −2 < aJ2n,b >. So

xCt = x(Lt
1, . . . , L

t
h,M t

1, . . . ,M
t
h)

= −2(< xJ2n, L1 >, . . . , < xJ2n, Ln >,< xJ2n,M1 >, . . . , < xJ2n,Mn >)

= −2(−z′′1 , . . . ,−z′′h, z′1, . . . , z
′
h)

= −2z
(

J2h
0

)

and similarly yCt = −2w
(

J2h

0

)

. By Theorem 7.1 we have

2xJ2ny
t = 2(xJ2n)J2n(yJ2n)t

= 2(
h

∑

i=1

z′iLi +
h

∑

i=1

z′′i Mi +
h

∑

i=1

zjRj)J2n(
h

∑

i=1

w′
iLi +

h
∑

i=1

w′′
i Mi +

h
∑

i=1

wjRj)
t

= 4
h

∑

i=1

zi
′w′′

i − z′′i w′
i

= 4(z′1, . . . , z
′
h, z′′1 , . . . , z′′h)J2h(w′

1, . . . , w
′
h, w′′

1 , . . . , w′′
h)t

= 4z
(

J2h

0

)

J2h(w
(

J2h

0

)

)t

= xCtJ2n(yCt)t

= xCtJ2hCyt

as desired. �

7.0.14. Identity. Let B2n : Z2n × Z2n → Z be an anti-symmetric bilinear
form defined by B2n(x,y) = xJ2ny

t, where J2n is the symplectic matrix
defined above. It is easy to see that B2n descends to a homomorphism
B2n : Z2n∧Z2n → Z. Let C : Z2n → Z2h be the map defined by C(x) = xCt.
Since R has rank n − h, the row space of R is generated by n − h vectors.
Let R′ be a n−h× 2n matrix whose rows generate the row space for R and
let R : Z2n → Zn−h be the map defined by R(x) = x(R′)t. Let

0 −−−−→ K
i−−−−→ Z2n R−−−−→ Zn−h (7.1)

be an exact sequence where K =ker(R) and i is the inclusion. Let C ∧ C :
Z2n ∧ Z2n → Z2h ∧ Z2h be defined by (C ∧ C)(x,y) = xCt ∧ yCt. Let m2
denote the homomorphism from Z to Z defined by multiplication by 2. Then
the conclusion of Corollary 7.1 can be seen as the following commutative
diagram:
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K ∧K
B2n−−−−→ Z

C∧C





y
m2





y

Z2h ∧ Z2h B2h−−−−→ Z

(7.2)

The above diagram implies that if R(x) = R(y) = 0 then 2 B2n(x,y) =
B2h(xCt,yCt).

Let G be an abelian group. Let G ∧G denote the second exterior product
i.e., if A2 is the subgroup of G ⊗ G generated by all the elements of the
type g ⊗ g then G ∧ G = G ⊗ G/A2. For g = (g′1, . . . , g

′
n, g′′1 , . . . , g′′n) and

h = (h′
1, . . . , h

′
n, h′′

1 , . . . , h′′
n) ∈ G2n. Define

g
∧

h =
n

∑

i=1

g′i ∧ h′′
i − g′′i ∧ h′

i ǫ G ∧Z G

Using the identification G2n ≃ Z2n ⊗ G all the maps defined earlier can
be extended to G2n as follows: Define R ⊗ id : Z2n ⊗ G → Zn−h ⊗ G
by (R ⊗ id)(a ⊗ g) = R(a) ⊗ g. Similarly the map C can be extended to
a map C ⊗ id : Z2n ⊗ G → Zn−h ⊗ G. The map C ∧ C extends to the
map C ∧ C : (Z2n ⊗ G) ∧ (Z2n ⊗ G) → (Z2h ⊗ G) ∧ (Z2h ⊗ G) defined by
(C ∧ C)((a ⊗ g) ∧ (b ⊗ h)) = (aCt ⊗ g) ∧ (bCt ⊗ h) . The map B2n can
be extended to the map B2n : (Z2n ⊗ G) × (Z2n ⊗ G) → G ∧ G defined
by B2n((a ⊗ g) ∧ (b ⊗ h)) = B2n(a,b)(g ∧ h). Observe that using the
identification G2n ≃ Z2n⊗G, B2n(g,h) = g

∧

h and B2n descends to a map
from G2n ∧G2n to G ∧G.

From the diagram (7.2) we immediately obtain the following diagram:

(K ⊗G) ∧ (K ⊗G)
B2n−−−−→ G ∧G

C∧C





y
m2





y

(Z2h ⊗G) ∧ (Z2h ⊗G)
B2h−−−−→ G ∧G

(7.3)

Let x,y ∈ K and g, h ∈ G. Let g and h correspond to x ⊗ g and y ⊗ h
respectively Observe that g and h ∈ ker(R⊗ id). The diagram (7.3) implies
that 2 g

∧

h = (C ⊗ id)(g) ∧ (C ⊗ id)(h).

Suppose the map R in the sequence (7.1) is surjective i.e. we have the
following short exact sequence :

0 −−−−→ K
i−−−−→ Z2n R−−−−→ Zn−h −−−−→ 0 (7.4)

Then tensoring the above sequence with G we get:

0 −−−−→ K ⊗G
i⊗id−−−−→ Z2n ⊗G

R⊗id−−−−→ Zn−h ⊗G −−−−→ 0 (7.5)
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This sequence is exact because Tor(Zn−h, G) = 0 for any abelian group G.
In this case ker(R ⊗ id) = K ⊗G

In general R is not surjective. We would like to show that a diagram (and
the corresponding identity) similar to the diagram (7.3) holds for ker(R⊗id).
Let us explain the general situation.

For a cupsed hyperbolic 3-manifold N , let N∗ denote the complex obtained
by identitying each torus cusp to a point. If N has an ideal triangulation
given by a complex X such that N = X −X(0) then N∗ = X. Observe that
H1(N

∗; Z/2) = H1(N, ∂N ; Z/2). In is proved in [26] (Theorem 4.2) that the
following sequence is exact:

0 −−−−→ K
i−−−−→ Z2n R−−−−→ Zn−h −−−−→ H1(N

∗; Z/2) −−−−→ 0
(7.6)

Let us denote the group H1(N
∗; Z/2) by A. The sequence (7.6) is a free

resolution of H1(N
∗; Z/2). Tensoring it with G we get the following chain

complex:

C : 0 −−−−→ K ⊗G
i⊗id−−−−→ Z2n ⊗G

R⊗id−−−−→ Zn−h ⊗G −−−−→ 0 (7.7)

The homology of this complex is as follows: H0(C) = G ⊗ A, H1(C) =
Tor(G,A) = ker(R⊗ id)/(K ⊗G) and Hi(C) = 0 for i ≥ 2.

Since A = H1(N
∗; Z/2), the group Tor(G,A) contains only 2-torsion. Ob-

serve that in the following cases Tor(G,A) = 0 and hence ker(R⊗id) = K⊗G
which gives us the commutative diagram (7.3).

(1) G is a torsion-free abelian group.
(2) Torsion in G is other than 2-torsion.
(3) A = H1(N

∗; Z/2) = 0 which holds for instance when N is a knot
complement or more generally when the map i∗ : H1(∂N ; Z/2) →
H1(N ; Z/2) is surjective.

Since Tor(G,A) = ker(R ⊗ id)/(K ⊗ G) we have the following short exact
sequence:

0 −−−−→ K ⊗G
i⊗id−−−−→ ker(R ⊗ id) −−−−→ Tor(G,A) −−−−→ 0 (7.8)

We will show that this sequence splits. Let C′ be the following chain complex:

C′ : 0 −−−−→ Z2n R−−−−→ Zn−h −−−−→ 0 (7.9)

Then by the Universal Coefficient Theorem the following sequence splits:

0 −−−−→ H1(C
′)⊗G −−−−→ H1(C′ ⊗G) −−−−→ Tor(H0(C′, G)) −−−−→ 0

(7.10)
Now H1(C′) = ker(R), H1(C′ ⊗ G) = ker(R ⊗ id) and H0(C′) = A. The
splitting of the sequence (7.10) gives us a splitting of the short exact sequence
(7.8). Hence ker(R ⊗ id) = (K ⊗G) ⊕ Tor(G,A). Since A = H1(N

∗; Z/2),
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ker(R⊗id) differs from K⊗G in just 2-torsion. So the commutative diagram
(7.3) holds for ker(R ⊗ id) in place of K ⊗G after multiplication by 2 i.e.

ker(R ⊗ id) ∧ ker(R⊗ id)
2B2n−−−−→ G ∧G

C∧C





y
m2





y

(Z2h ⊗G) ∧ (Z2h ⊗G)
2B2h−−−−→ G ∧G

(7.11)

Let g ∈ G2n then using the identification G2n ≃ Z2n ⊗ G we can see g =
∑

xi ⊗ gi. Let us denote R(g) = (R ⊗ id)(
∑

xi ⊗ gi) and C(g) = (C ⊗
id)(

∑

xi ⊗ gi). We proved:

Lemma 7.1. Let g,h ∈ G2n, then R(g) = R(h) = 0 ⇒ 4 g
∧

h =
2 C(g)

∧

C(h). In case G is torsion-free or H1(N
∗; Z/2) = 0 then R(g) =

R(h) = 0 ⇒ 2 g
∧

h = C(g)
∧

C(h).

8. Bloch Invariants

Bloch invariants of hyperbolic 3-manifolds were introduced in [30]. Using
a degree one ideal triangulation of N , Neumann and Yang defined an in-
variant β(N) which is determined by the cross-ratio parameters of the ideal
triangulation. Using group homology they showed that β(N) is independent
of the triangulation and lies in the Bloch group B(C). In this section we will
give basic definitions and show that β(N) lies in B(C) using the identity
proved earlier.

8.0.15. Bloch group. As seen in Section 2.2, C − {0, 1} is the parameter
space of hyperbolic ideal tetrahedra. We can study the free abelian group
generated by C− {0, 1} modulo the relations induced by the geometry.

Definition 8.1. The pre-Bloch group P(C) is the quotient of the free Z-
module Z(C− {0, 1}) by all instances of the relations:

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x

1− y
] = 0 (8.1)

[x] = [1− 1

x
] = [

1

1− x
] = −[

1

x
] = −[

x− 1

x
] = −[1− x] (8.2)

The relations (8.1) are called the 5-term relations and are induced as follows:
An ideal polytope in H3 on 5 vertices can be decomposed into 2 tetrahedra
with a face in common or into 3 tetrahedra with an edge in common. See
Figure 2. This is often referred to as the 2-3 move. It is proved in [32]
(see also [23]) that any two (topological) ideal triangulations containing at
least 2 tetrahedra of a 3-manifold are related by 2-3 moves. This gives
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2-3

move

Figure 2. The 5 tetrahedra obtained from the 2-3 move in
the 5-term relations

an immediate relation on the “sums” of tetrahedra which involves 5 cross-
ratios. If z0, . . . , z4 are the 5 ideal vertices then the 5-term relation for the
cross-ratios looks like:

4
∑

i=0

(−1)i[z0 : . . . : ẑi : . . . : z4] = 0

This equation takes the form of Equation (8.1) for z0 = y, z1 = x, z2 =
1, z3 = ∞ and z4 = 0. The relations 8.2 are induced by the fact that
z, 1/(1 − z), 1− 1/z give the same tetrahedron and 1/z, 1 − z, z/(z − 1)
give the same tetrahedron with opposite orientation.

The group P(C) comes up in the study of scissors congruence in H3. See [27]
for more details. The volume of an ideal tetrahedra vol(∆(z)) = D2(z) where
D2(z) is the “Bloch-Wigner dilogarithm function” defined earlier in Section
2.2. It follows that D2(z) satisfies a functional equation corresponding to
the 5-term relation and hence gives a map vol: P(C) → R. The analog
of the Dehn invariant is a map µ : P(C) → C∗ ∧Z C∗ defined as µ([z]) =
2(z ∧ (1− z)). We define:

Definition 8.2. The Bloch group B(C) is the kernel of the map µ.

Remark 8.1.

(1) The pre-Bloch and the Bloch groups can be defined for any field k.
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(2) There are several definitions of the Bloch group in the literature.
They differ from each other by at most torsion and agree for alge-
braically closed fields. See [30] for more details on the differences
and other definitions of the Bloch and the pre-Bloch groups.

One of the main conjectures about the Bloch group states that:

Conjecture 8.1. (Bloch Rigidity Conjecture) The Bloch group B(C) is
countable.

8.0.16. The Bloch invariant. Let N be a hyperbolic 3-manifold with a degree-
one ideal triangulation with cross-ratio parameters z1, . . . , zn.

Definition 8.3. The Bloch invariant β(N) is defined as the element
n

∑

i=1

[zi] ∈

P(C).

In order to show that the Bloch invariant β(N) ∈ B(C) we need some alge-
braic preliminaries. Let (C∗, ·) denote the multiplicative group of complex
numbers and let µ denote the subgroup of roots of unity in C∗. It is easy to
see that µ is isomorphic to Q/Z. Let zµ denote the equivalence class of z in
C∗/µ.

Lemma 8.1. C∗/µ is a Q-vector space with addition defined by complex

multiplication and scalar multiplication defined by (p
q )zµ = z

p/q
µ .

Proof: For any non-zero complex number z and a positive integer q, z1/q

is well defined modulo roots of unity. Hence z
1/q
µ is well defined in C∗/µ.

This makes the scalar multiplication well defined and gives C∗/µ a Q-vector
space structure. Moreover the exponential map exp : C → C∗ defined
by exp(z) = ez is a group homomorphism and exp−1(µ) = 2πiQ. Hence
exp : C/2πiQ→ C∗/µ is a vector space isomorphism. �

Lemma 8.2. C∗ ∧Z C∗ ≃ (C∗/µ) ∧Z (C∗/µ).

Proof: The projection map p : C∗ → C∗/µ defined by p(z) = zµ induces
a surjective homomorphism q : C∗ ∧Z C∗ → (C∗/µ) ∧Z (C∗/µ). The kernel
ker(q) = (µ ∧Z µ) ⊕ (µ ⊗ C∗/µ). We will show that if α is a root of unity
then α⊗ z = 0 for all z ∈ C∗. Let αn = 1. Since we can take n-th roots in
C, there is a w ∈ C∗ such that wn = z. So we have

α⊗ z = α⊗ wn = n α⊗ w = αn ⊗ w = 1⊗ w = 0

Hence the map q is injective and hence an isomorphism. �
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Since C/µ is a Q-vector space, (C∗/µ) ∧Z (C∗/µ) is also a Q-vector space
and hence C∗ ∧Z C∗ is a Q- vector space.

Lemma 8.3. If (z1, . . . , zn) ∈ P0(N) then 2
∑n

i=1 zi ∧ (1− zi) =
∑h

k=1 lk ∧
mk ∈ C∗ ∧Z C∗.

Proof: Since z1, . . . zn satisfy the gluing equations 3.2 the tuple x = ((z1)µ, . . . (zn)µ) ∈
(C∗/µ)n satisfies the condition Rxt = 0, where R is the gluing matrix. Since
C∗/µ is a Q-vector space by above we can use Lemma 7.1 to get

2

n
∑

i=1

(zi)µ ∧ (1− (zi)µ) = x
∧

x =
1

2
Cxt

∧

Cxt =

h
∑

k=1

(lk)µ ∧ (mk)µ

This identity holds in C∗/µ ∧Z C∗/µ. Since C∗ ∧Z C∗ ≃ (C∗/µ) ∧Z (C∗/µ)
from above we have that the corresponding identity 2

∑n
i=1 zi ∧ (1 − zi) =

∑h
k=1 lk ∧mk also holds in C∗ ∧Z C∗. �

Let T be a degree 1 ideal triangulation of N with parameters z1, . . . zn.
This means that either T is a genuine ideal triangulation in which case the
holonimies mk = lk = 1 or N is obtained by Dehn surgery on some (or all)
of the cusps in which case mpk

k lqk

k = 1 for some integers pk and qk.

Proposition 8.1. β(N) ∈ B(C) .

Proof: β(N) =

n
∑

i=1

[zi] ∈ P(C). By the Lemma 8.3

µ(
n

∑

i=1

[zi]) = 2
n

∑

i=1

zi ∧ (1− zi) =
h

∑

k=1

lk ∧mk

Now either mk = lk = 1 or (mk)
p(lk)

q = 1 and in either case lk ∧mk = 0
and hence β(N) ∈ B(C) . �

The key point in the proof is the identity 2
∑n

i=1 zi∧(1−zi) =
∑h

k=1 lk∧mk.
This means that the holonomies at the cusps determine the image µ(β(N)).
In particular we are interested in manifolds with the same holonomies at the
cusp.

9. Variation of the Bloch invariant

9.0.17. Bloch invariant, volume and Chern-Simons invariant. A(l,m) has
appeared in literature in disguises. For example in [31] Neumann and Zagier
implicitly showed that A(l,m) determines the variation of volume of N and
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in [42] Yoshida implicitly showed that A(l,m) determines the variation of the
Chern-Simons invariant of N. The Bloch invariant is related to the volume
and the Chern-Simons invariant via the Bloch regulator map. Define

ρ : P(C)→ C ∧Z C

by

ρ(z) =
log z

2πi
∧ log(1− z)

2πi
+ 1 ∧ R(z)

2π2

where R(z) is the Rogers dilogarithm function defined by

R(z) =
1

2
log z log(1− z)−

∫ z

o

log(1− t)

t
dt

This map restricts to B(C) to give a map ρ : B(C) → C/Q. In [30] Neumann
and Yang showed that

2π2

i
ρ(β(N)) = vol(N) + iCS(N) ∈ C/(iπ2Q).

So it is natural to expect that A(l,m) is related to the variation of the
Bloch invariant of N . There is further evidence given by Ramakrishnan’s
conjecture from K-theory.

Conjecture 9.1. (Ramakrishnan’s Conjecture) ρ : B(C) → C/π2Q is
injective.

9.0.18. Bloch invariant and A0(l,m) . Let us begin by defining the variation
of the Bloch invariant.

Definition 9.1. For z ∈ P0(N) define ∆βN (z) = β(N) − β(N(z)) where
β(N(z)) =

∑n
i=1[zi]. ∆β(N) is called the variation of the Bloch invariant.

β(N(z)) ∈ P(C) in general and β(N(z)) ∈ B(C) when z corresponds to a
hyperbolic Dehn surgery.

In view of Ramakrishnan’s Conjecture it is natural to make the following
conjecture:

Conjecture 9.2. For a hyperbolic 3-manifold N , A0(l,m) determines the
variation of the Bloch invariant ∆βN .

Let N1 and N2 be one-cusped hyperbolic 3-manifolds such that A0,N1(l,m) =

A0,N2(l,m). Hence H0(N1) = H0(N2). We can define a curve P = {(z,w) ∈
P0(N1) × P0(N2) : HolN1(z) = HolN2(w)}. We have the following commu-
tative diagram:

P
p1−−−−→ P0(N1)

p2





y

HolN1





y

P0(N2)
HolN2−−−−→ C×C

(9.1)
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where pi : P → P0(Ni) are the projection maps on the i-th coordinate.
We can now define the variation of the Bloch invariant for elements of P .
For (z,w) ∈ P define variation of Bloch invariant on P to be ∆β(z,w) =
∆βN1(z)−∆βN2(w). It follows from Theorem 4.2 that the maps p1 and p2

are birational isomorphisms and that the curve P parametrizes both P0(N1)
and P0(N2). From the results of the previous sections we get:

Theorem 9.1. Let N1, N2 be one-cusped hyperbolic 3-manifolds. If A0,N1(l,m) =

A0,N2(l,m) then ∆β(z,w) ∈ B(C) for all (z,w) ∈ P .

Proof:

µ(∆β(z,w)) = µ(∆βN1(z)−∆βN2(w))

= µ(β(N1))− µβ(N2)) + 2

n
∑

i=1

zi ∧ (1− zi)− 2

m
∑

j=1

wj ∧ (1− wj)

= l(z) ∧m(z)− l(w) ∧m(w) by Lemma 8.3

= 0 by the diagram 9.1

which shows that ∆β(z,w) ∈ B(C) for all (z,w) ∈ P . �

From the above Theorem we get a family of Bloch invariants parametrized
by a complex curve in the Bloch group. The Bloch Rigidity Conjecture
would imply that this family is constant. This implies:

Theorem 9.2. Bloch Rigidity Conjecture implies Conjecture 9.2.

The symmetries of A0(l,m) give symmetries on the Bloch invariant. To
describe the precise result let us set up some notation. Let N be a one
cusped hyperbolic 3-manifold and let

(

a b
c d

)

with ad− bc = 1 be a symmetry

of A0(l,m). This means that A0(l,m) = A0(l
amb, lcmd) up to multiplication

by powers of l and m and that the curve defined by A0(l,m) is invariant
under the map s : C2 → C2 given by s(l,m) = (lamb, lcmd). We have a map
S : P0(N)→ P0(N) such that the following diagram commutes

P0(N)
S−−−−→ P0(N)

Hol





y
Hol





y

C2 s−−−−→ C2

(9.2)

Then we have

Theorem 9.3. If A0(l,m)
.
= A0(l

amb, lcmd) then β(N(z))−β(N(S(z))) ∈
B(C).
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Proof: As in the proof of proposition 5 we have

µ(β(N(z)) − β(N(s(z)))) = 2
n

∑

i=1

zi ∧ (1− zi)− 2
n

∑

i=1

S(z)i ∧ (1− S(z)i)

by Lemma 8.3

= l(z) ∧m(z)− l(S(z)) ∧m(S(z))

= l ∧m− lamb ∧ lcmd by diagram(9.2)

= l ∧m− (ad− bc)l ∧m

= 0

and hence β(N(z)) − β(N(S(z))) ∈ B(C) . �

We conjecture that this should be a constant. We show this in the case
when A0(l,m) is an equation of a rational curve in the next section.

We have a similar situation for manifolds with more than one cusp. Let
us set up some notation before we describe it. Let N by a hyperbolic 3-
manifold with h cusps. As described in section 2, P0(N) has dimension
h. For 1 ≤ k ≤ h let Qk ⊂ P0(N) be the subset consisting of parameters
corresponding to leaving all but the kth cusp unsurgered and surgering the
kth cusp. Qk is obtained by adding h − 1 completeness equations, one for
each cusp, to the gluing equations and hence dimQK = 1 and Qk is a curve
in P0(N). For z ∈ Qk, Hol(z) = (1, . . . , lk,mk, . . . , 1). Let qk : C2h → C2 be
defined by qk(l1,m1, . . . , lh,mh) = (lk,mk), then qk ◦Hol(Qk) is a curve in

C2. Let us denote the defining polynomial of this curve by A
k
0(l,m). This

is the A-polynomial associated to the kth cusp of the manifold N .

Let N1, N2 be two hyperbolic 3-manifolds such that A
k1

0,N1
(l,m) = A

k2

0,N2
(l,m)

As before we can define Q = {(z,w) ∈ Qk1(N1)×Qk2(N2) : qk1 ◦HolN1(z) =
qk2 ◦HolN2(w)}. We can define similarly a variation of the Bloch invariant
on Q to be ∆β(z,w) = ∆βN1(z) − ∆βN2(w). Similar to Theorem 9.1 we
have

Theorem 9.4. Let N1, N2 be two hyperbolic 3-manifolds. If A
k1

0,N1
(l,m) =

A
k2

0,N2
(l,m) then ∆β(z,w) ∈ B(C) for all (z,w) ∈ Q.

10. The case for rational curves

In the case that A0(l,m) is a defining equation of a rational curve, we can
prove Conjecture 9.2. The key idea in the proof is that if C is a rational curve
then the function fieldM(C) = C(t) i.e the field of rational functions over C

and in this case it is a classical result in K-theory that the B(C(t)) = B(C) .
We will also give an elementary proof of this fact using the 5-term relations
following [18] and [41].
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10.0.19. Identity in the function field of any curve. Let N be a one-cusped
hyperbolic 3-manifold and let k = C(P0(N)). k∗ is an abelian group under
multiplication. We will denote the coordinate functions zi and the holonomy
functions m and l by the same letters while identifying them as elements of
k.

Lemma 10.1. The coordinate functions z1, . . . , zn and the holonomy func-
tions l and m as elements of k∗ satisfy the identity

8

n
∑

i=1

zi ∧ (1− zi) = 4 l ∧m

in k∗ ∧Z k∗

Proof: Let z = (±z1, . . . ,±zn, 1− z1, . . . , 1− zn) ∈ (k∗)2n be such that the
signs on the zi’s are chosen so that the gluing equation always equals 1. Since
the gluing equations are defining equations of P0(N) and m and l are func-
tions on P0(N), as an 2n-tuple z satisfies R(z) = 0 for R defined in Section
(3.1) and hence by Lemma 7.1 4 z

∧

z = 2 C(z)
∧

C(z). Since C(z) = (l,m)
we get 8

∑n
i=1(±zi)∧ (1− zi) = 4 (±l)∧ (±m). Since 2 (±1)∧ f = 1∧ f = 0

the above identity simplifies to 8
∑n

i=1 zi ∧ (1 − zi) = 4 (l ∧m). �

10.0.20. Bloch group of C(t). It follows from [36] that B(C(t)) = B(C) . We
will give a direct proof following [18] and [41]. The following proposition is
proved in [18] and [41]. Let us give the proof for completeness.

Proposition 10.1. Any rational function in C(t) is equal to a linear com-
bination of constants and linear polynomials modulo relations (8.1) and
(8.2) i.e P(C(t)) is generated by constants and polynomials of the form
p(z) = a(z + b) where a, b ∈ C and a 6= 0.

Proof: Observe that in the pre-Bloch group of any field the relations [x] =
−[1/x] and [x] = −[1 − x] generate all the other relations in (8.2). For
f(t) = p(t)/q(t), where p(t) and q(t) are polynomials with no common
factors define d(f) = max(deg(p(t)), deg(q(t))). We say that a rational
function f(t) is linear is f(t) = az + b. We can write

f = α

n
∏

i=1

(t− ai)

m
∏

j=1

(t− bj)

and (1− f) = α′

r
∏

k=1

(t− ck)

m
∏

j=1

(t− bj)
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where α,α′ ∈ C∗ and the numerator and denominator of f(t) has no common
factors. Using the relation [x] = −[1/x] we can assume that n ≥ m. Let

x =
(c1 − a1)(t− b1)

(c1 − b1)(t− a1)
and y = α

(c1 − a1)
n

∏

i=2

(t− ai)

(c1 − b1)
m
∏

j=2

(t− bj)

Then we get

y

x
= f(t), (1− x) =

(a1 − b1)(t− c1)

(c1 − b1)(t− a1)
and

(1−y) =

(c1 − b1)
m
∏

j=2

(t− bj)− α(c1 − a1)
n

∏

i=2

(t− ai)

(c1 − b1)
m
∏

j=2

(t− bj)

=
(t− c1)g(t)

(c1 − b1)
m
∏

j=2

(t− c1))

where deg(g(t)) ≤ n− 2. Hence

1− x

1− y
=

(a1 − b1)

m
∏

j=2

(t− b1)

(t− a1)g(t)
and

1− x−1

1− y−1
=

y(1− x)

x(1− y)
= α

(a1 − b1)

n
∏

i=2

(t− a1)

(t− b1)g(t)

If n ≥ 2 we get d(x), d(y), d(1−x
1−y ), d(1−x−1

1−y−1 ) ≤ (n−1). Since y
x = f(t) we can

express f(t) as a linear combination of rational functions gi with d(gi) < d(f)
using the 5-term relations (8.1). Proceeding inductively in this way we get
f(t) as a linear combination of rational functions gi with d(gi) = 1. In case

f(t) is a polynomial start with x =
(c1 − a1)

t− a1)
and proceed similarly.

If f(t) = α
t− a

t− b
then let x = 1− α and y =

b− a

t− a
. We get

y

x
=

(b− a)

(1− α)(t− a)
,

1− x−1

1− y−1
= α

(b− a)

(1 − α)(z − b)
and

1− x

1− y
= α

t− a

t− b
= f(t)

If α = 1 i.e. f(t) =
t− a

t− b
then using relations [x] = −[1 − x] = −[1/x] we

get

[f ] = −[1− f ] = −[
a− b

t− b
] = [

t− b

a− b
]

Hence using the relation (8.1) and (8.2) any rational function is a linear
combination of linear polynomials. �
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From relations (8.2) we can see that [a(z + b)] = −[1−a(z + b)] = −[−a(z +
b− 1/a)] are the only relations among the generators of P(C(t)) of the form
[a(z + b)], a 6= 0. Proposition 10.1 tells us that if [f ] ∈ P(C(t)) then

[f ] =

m
∑

j=1

mj [xj] +

n
∑

i=1

ni[ai(z + bi)]

where [xj] ∈ P(C) and only one of [a(z + b)] or [−a(z + b−1/a)] is included.
Let µ : P(C(t)) → C(t)∗ ∧Z C(t)∗ be the map µ([f ]) = 2 f ∧ (1 − f) as
defined in Section 3.2. Then by definition ker(µ) = B(C(t)).

Lemma 10.2. For [f ] as above, if µ([f ]) = 0 then ni = 0 for all 1 ≤ i ≤ n.

Proof: C(t)∗ = C∗ ⊕H where H = ⊕α∈CZ(z − α). So

C(t)∗ ∧Z C(t)∗ = (C∗ ⊕H) ∧Z (C∗ ⊕H)

= (C∗ ∧Z C∗) ⊕ (C∗ ⊗H) ⊕ (H ∧Z H)

Let [a(z + b)] ∈ P(C(t)), then

µ([a(z + b)]) = 2 (a(z + b) ∧ (1− a(z + b)))

= 2 (a(z + b) ∧ (1− az − ab))

= 2 (a(z + b) ∧ −a(z + b− 1/a))

= 2 ((a ∧ (−a)) ⊕ (a⊗ (z + b− 1/a) − a⊗ (z + b))

⊕ ((z + b) ∧ (z + b− 1/a)))

= 2 ((a⊗ (z + b− 1/a) − a⊗ (z + b))⊕ ((z + b) ∧ (z + b− 1/a)))

since 2 (x ∧ (−y)) = 2 (x ∧ y)

Since H = ⊕α∈CZ(z − α), H ∧Z H is a free abelian group with basis I =
{z − α ∧ z − β : α 6= β, α < β in the lexicographic ordering on C}. Let
pH : C(t)∗ ∧Z C(t)∗ → H ∧Z H be the projection map on H ∧Z H. Then
pH(µ([a(z+b)])) = 2 (z+b)∧(z+b−1/a) such that ±(z+b)∧(z+b−1/a) ∈ I.
Observe that

pH(µ(−[−a(z + b− 1/a)])) = −2 (z + b− 1/a) ∧ (z + b)

= 2 (z + b) ∧ (z + b− 1/a)

= pH(µ([a(z + b)]))
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Since µ([f ]) = 0 we get

pH(µ([f ])) = pH(µ(
n

∑

i=1

ni [ai(z + bi)]))

=

n
∑

i=1

ni pH(µ([ai(z + bi)]))

= 2
k

∑

i=1

(±ni) (z + bi) ∧ (z + bi − 1/ai)

= 0

Since ±(z + bi) ∧ (z + bi − 1/ai) ∈ I, the basis of H ∧Z H we get ±ni = 0
for all i and hence [f ] ∈ P(C) and since µ([f ]) = 0, [f ] ∈ B(C). �

Lemma 10.3. P(C(t)) has no 2-torsion and hence no 4-torsion.

Proof: Let [f ] ∈ P(C(t)) be such that 2[f ] = 0. Let [f ] =
∑m

j=1 mj [xj] +
∑n

i=1 ni[ai(z+bi)]. Since 2[f ] = 0, 2µ([f ]) = 0 and from the proof of Lemma
10.2 we can see that ni = 0 for all i. Hence [f ] ∈ P(C). It is proved in [36]
and [37] that P(C) and B(C) are Q-vector spaces. Hence 2[f ] = 0⇒ [f ] = 0.
This shows that P(C(t)) has no 2-torsion hence no 4-torsion. �

We have

Theorem 10.1. B(C(t)) = B(C)

Proof: By definition B(C(t)) = ker(µ). Since C ⊂ C(t), B(C) ⊂ B(C(t)).
By Lemma 10.2 if [p] ∈ B(C(t)) then [p] =

∑n
j=1 mj[xj ] with [xj ] ∈ P(C)

for all j. Hence [p] ∈ B(C) which implies B(C(t)) ⊂ B(C) . �

10.0.21. Variation of Bloch invariant for rational curves. Let N1 and N2 be
one-cusped hyperbolic 3-manifolds with A0,N1(l,m) = A0,N2(l,m). Let P =
{(z,w) ∈ P0(N1)×P0(N2) : HolN1(z) = HolN2(w)} be the curve defined in
Section 3.3 Theorem 9.1. For (z,w) ∈ P let ∆β(z,w) = ∆βN1(z)−∆βN2(w)

Theorem 10.2. Conjecture 2 is true if A(l,m) is a defining equation of
a rational curve i.e. if N1 and N2 are one-cusped hyperbolic 3-manifolds
with A0,N1(l,m) = A0,N2(l,m) and A0,N1(l,m) = A0,N2(l,m) is a defining
equation of a rational curve then ∆β(z,w) = 0 which implies that ∆βN1 =
∆βN2 .

Proof: Since A0,N1(l,m) = A0,N2(l,m) is an equation of a rational curve,
P is rational and hence the function fieldM(P ) ≃ C(t). Now the functions
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zi(p), wj(p) and l(p),m(p) can be seen as elements of C(t). Moreover the
Bloch variation ∆β(z,w) can be seen as an element of P(C(t)). We have

µ(4(∆β)) = µ(4(∆βN1)− 4(∆βN2))

= 4 µ(β(N1))− 4 µ(β(N2)) + 8
n

∑

i=1

zi ∧ (1− zi)− 8
m

∑

j=1

wj ∧ (1−wj)

= 4 l(z) ∧m(z)− 4 l(w) ∧m(w) by Lemma 10.1

= 0 by the definition of P

Hence we have that 4 (∆β) ∈ B(C(t)). By Theorem 10.1 we have that
4(∆β) ∈ B(C) . By Lemma 10.3, P(C(t)) and hence B(C) has no 4-torsion.
Morover it is proved in [36] and [37] that B(C) is a Q-vector space. Hence
∆β ∈ B(C) and equals a constant. This constant can be found out by
evaluating at the point in P which corresponds to the complete param-
eter in P0(N1) and P0(N2). So ∆β(z0,w0) = ∆βN1(z

0) − ∆βN2(w
0) =

(β(N1))− β(N1))− (β(N2))− β(N2)) = 0. Hence ∆βN1 = ∆βN2 . �

Corollary 10.1. For N1, N2 satisfying the above hypothesis we have β(N1(p, q)) =
β(N2(p, q))

Theorem 10.3. For N satisfying that A0(l,m) is the equation of a rational
curve and A(l,m) = A0(l

amb, lcmd) then β(N(p, q)) = β(N(ap+bq, cp+dq))
and in particular (N(p, q)) = vol(N(ap + bq, cp + dq)).

10.0.22. Examples. The polynomial A0(l,m) of the one-cupsed census man-
ifold m208 has many interesting symmetries. The coefficient matrix of
A0(l,m) is:




























1
−2 −2 −2 −2

1 −2 29 −28 29 −2 1
−2 −28 2 2 −28 −2

−2 29 2 12 2 29 −2
−2 −28 2 2 −28 −2

1 −2 29 −28 29 −2 1
−2 −2 −2 −2

1





























Assuming the coefficient 12 to be the origin we can see the symmetries of
the above matrix as the following matrices in SL(2, Z):

a =

(

0 1
−1 1

)

, b =

(

0 1
1 0

)

a has order 6 and b has order 2. Note that all A-polynomials have the
symmetry

(

−1 0
0 −1

)

which implies A0(1/l, 1/m)
.
= A0(l,m).
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Another source of examples is the rigidity of cusps phenomenon studied by
Neumann and Reid in [29]. Neumann and Reid construct infinitely many
examples of two cusped manifolds such that surgery on one cusp does not
affect the other. In particular one obtains infinitely many one-cusped man-
ifolds with the same A-polynomial. In [5] Calegari studies some of these
examples in more detail.

11. Cyclotomic edge polynomials

Given a polynomial G(x, y) =
∑

amnxmyn, the Newton polygon NG was
defined in Section 3. Every edge of NG lies on some line with equation
px + qy = d. Fix an edge e of NG. The part of the G corresponding to e is
of the form

G
′

e =
∑

pm+qn=d

amnxmyn

As in Section 2 after the substitution x = xp
1 and y = txq

1 we get:

G
′

e = xd
1

∑

pm+qn=d

amntn

The polynomial Ge(t) obtained from G
′

e by dividing by xd
1 is called the edge

polynomial of G corresponding to the edge e of the Newton polygon NG.
Another striking property of the A-polynomial proved in [7] is that the A-
polynomial has cyclotomic edge polynomials. In this section we will prove
that the polynomial H(l,m) obtained in Section 2 from the combinatorics of
triangulations also has this property. In fact we only need the combinatorial
properties defining this polynomial.

11.0.23. K2 and the tame symbol. Let F be a field with a discrete valuation
ν. Then the valuation ring Oν = {x ∈ F : ν(x) ≥ 0} is a principal ideal
domain with the unique maximal ideal Mν = (π), where π ∈ F is such
that ν(π) = 1. The residue field of ν is kν = Oν/Mν . If a, b ∈ F and

s = gcd(ν(a), ν(b)), then the element aν(b)/sbν(a)/s determines a well-defined
element of the residue field kν . This element is denoted by τν(a, b).

There is a homomorphism dν : K2(F ) → k∗
ν given by dν({a, b}) = τν(a, b).

The homomorphism dν is called the tame symbol. See [25] for more details.
Using results of Matsumoto (see [25]) and Bloch (see [19] and [36]) we have
the following exact sequence modulo 2:

0 −−−−→ B(F )
i−−−−→ P(F )

µ−−−−→ F ∗ ∧Z F ∗ sym−−−−→ K2(F ) −−−−→ 0
(11.1)

where i is the inclusion of the Bloch group B(F ) into the pre-Bloch group
P(F ), µ([x]) = 2 (x ∧ (1− x)) and sym(x ∧ y) = {x, y}.
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As described in Section 3, given G(x, y) =
∑

amnxmyn, an edge e of NG

with the equation px + qy = d and a root α of Ge we obtain a Puiseaux
parametrization of some irreducible component C of the curve given by
G(x, y) = 0. This Puiseaux parametrization also gives us a valuation ν on
the function field F = C(C) of C such that ν(x) = p and ν(y) = q. The

residue field for this valuation is C and the tame symbol τν(x, y) = αν(x)

where x and y are seen as elements of F .

11.0.24. Edge polynomials of H(l,m). Let N be a one-cusped hyperbolic 3-
manifold and let H(N) be the holonomy variety as defined in Section 2. Let
H(l,m) be the defining polynomial of H(N).

Proposition 11.1. Let l and m denote elements of F then the symbol
{l,m}8 = 1 in K2(F ).

Proof: From the exact sequence 11.1 we have that sym(l ∧ m) = {l,m}.
Now by the Lemma 10.1 we have 8

∑

zi ∧ (1 − zi) = 4 l ∧ m and since
µ(4

∑

[zi]) = 8
∑

zi ∧ (1 − zi) we have that (sym ◦ µ)(
∑

[zi]) = {l,m}4.
Hence by the exactness of the sequence we get {l,m}4 = 1 modulo 2 and
hence {l,m}8 = 1 in K2(F ). �

Theorem 11.1. The edge polynomials of H(l,m) are cyclotomic.

Proof: Let e be an edge of the Newton polygon NH of H(l,m) and let
C be the curve in H(N) associated to e. Then given a root α of the edge
polynomial He associated to e we obtain a valuation ν on the function field
F = C(C). As described in the previous subection we get the tame symbol

dν : K2(F ) → k∗
ν defined by dν(f, g) = τν(f, g) = αν(f). Since {l,m}8 = 1

by Proposition 11.1 we get α8ν(l) = 1 which implies that α is a root of unity.
Since α was arbitrary we get that every root of He is a root of unity implying
that He is cyclotomic. �
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